
i

i

“m” — 2009/4/12 — 13:55 — page 1 — #1
i

i

i

i

i

i

Contents

6 Memory Management and Filesystems 3

6.1 Contiguous allocation . 5
6.1.1 Fixed-size partitioning 5
6.1.2 Variable-size partitioning 6
6.1.3 Dynamic partitioning 7

6.1.3.1 Free frame lists 7
6.1.3.2 Allocation . 8
6.1.3.3 Buddy system 8

6.1.4 A few words on Disk Partitions 8
6.2 Non-contiguous Allocation . 10

6.2.1 Virtual memory: Paging 12
6.2.2 File Allocation Tables and Indirection 12
6.2.3 Paging with split tables 14
6.2.4 Translation Look-ahead Buffers and the Locality Principle 15
6.2.5 Caching for Filesystems 16
6.2.6 Page Replacement Strategies 17

6.2.6.1 FIFO Page Replacement 18
6.2.6.2 Second Chance Algorithm 19
6.2.6.3 Linux’ Page Replacement Strategy 19

6.2.7 Organization of Swap Space 20

1

i

i

“m” — 2009/4/12 — 13:55 — page 2 — #2
i

i

i

i

i

i

2

i

i

“m” — 2009/4/12 — 13:55 — page 3 — #3
i

i

i

i

i

i

6 Introduction to Memory

Management and Filesystems

There are two important resources which we have not yet treated in detail, and
both are concerned with data storage—one temporarily and one permanently:
Memory management is all about how processes will be given access to the
computer’s RAM, and filesystems deal with the question of how to store files
(and possibly directory structures) on a harddisk.

We will treat these two subjects in one chapter because there are many
concepts that appear in both topics, and there is a certain relatedness of both
fields.

Note that from a process’ point of view, memory is a direct resource and is
needed for running the process: If the process’ program code is not available
in memory (at least partially), it cannot be executed, because the CPU can
only execute instructions that are located in RAM. On the other hand, disk
space is not something that a process will (directly) need, instead access to
certain files may be a necessity for running a program. Now if we look at
disk space from a file’s point of view, we could say that a file (in order to be
read, modified or grown) needs disk space in a similar way as a process needs
memory to be run.

Let us look at some of the concepts that appear in both memory manage-
ment and filesystems:

partitioning of resources: On a system that will handle several processes in
parallel, memory must somehow be partitioned so that each process can
use a fraction of the RAM. Individual cells of memory are exclusive:
They can hold precisely one byte of information, and it has to belong to
a specific process (or the operating system itself) at any given time. It
may not be necessary that a process has memory throughout his whole
lifetime (for we will see that concepts such as swapping and paging allow
data to be stored on the disk for a while), but at least in those moments
when a process is actually excecuted by the CPU, it will have to be
given at least some RAM. It may be useful to limit the maximum RAM
that a process can access at any given time.

Similarly, if a system allows several files (and possibly directories) to
be created, accessed and modified on the disk, disk space has to be

3

i

i

“m” — 2009/4/12 — 13:55 — page 4 — #4
i

i

i

i

i

i

6 Memory Management and Filesystems

partitioned in a way that the disk can hold all these files and present
simple means to lookup files on the disk and access them. The smallest
unit of storage would in theory also be a byte, and such a byte (now
meaning the fixed location on disk) can only belong to one file (or to the
filesystem metadata) at any given time. As in the memory situation,
it may be useful to define a maximum filesize so as not use too much
of this resource, though most filesystems that implement such limits do
this on a per-user basis and not on per-file basis—limiting disk usage
per user (or per user group) is called a quota system.

access control: Access to memory locations should always be exclusive to one
process (or the operating system), otherwise a process could read or even
modify the process memory of a different process which is not advisable,
because it would be a source of instability or security problems.

Access to files is also often handled in a way that makes it exclusive
to a file owner, typically the file creator (or perhaps some other users,
depending of the access concepts a specific filesystem may have). And
from the view of processes it may be necessary to restrict file access to
only one process (even in a situation when several processes belong to
the same user who is also the owner of the file), so that no errors can
result from parallel access to a file.

free space management: Memory and disk usage must be handled dynami-
cally, because processes newly appear and are removed from the system
all the time, their needs for memory may change during the process run-
time, and also files can be created and deleted as well as grown while
the system is active.

In many memory management schemes there will be a list of free mem-
ory locations. We will see that is not useful to grant memory access
byte-wise, memory will often be partitioned into equal-sized smallest
chunks of memory that can be assigned to a process or removed from it.
If we call these smalles chunks (say, of size 1 KByte) memory frames,
then there will be need of a “free frame list” that knows which frames
are currently unused.

In the same way disks aren’t typically accessed byte-, but block-wise, a
block being a fixed size segment of the disk space. Note also that read
and write operations on the raw disk device always transfer a whole
block of data, and not a single byte. We will need a “free block list” in
order to know which blocks are still available for file storage and which
are not.

Methods for administering such free frame lists and free block lists will
be similar.

4

i

i

“m” — 2009/4/12 — 13:55 — page 5 — #5
i

i

i

i

i

i

6.1 Contiguous allocation

... ...

6.1 Contiguous allocation

In this section we present the most simple methods to distribute memory
among processes and disk space among files.

6.1.1 Fixed-size partitioning

Consider a computer that has 1 GByte of RAM. If we divide this memory
into 1-MByte-sized partitions, then we get 1024 such partitions, some of which
will have to be reserved to the operating system itself. Assuming that 1000
“unused” partitions will remain, such a system would allow for up to 1000
processes to be started and hold in memory in parallel. Each of the processes
will then have its own 1 MByte memory partition, meaning it can use up to
this 1 MByte for storing its own program code, stack, and data.

Obviously this method is not very flexible and it limits the possible usage
of the system in two ways:

• No more than about 1000 processes can be run in parallel. If there was
need for, say, running 2000 or more processes at the same time, then
the whole system would have to be reconfigured (with smaller, but more
memory partitions) and completely rebooted.

• No more than 1 MByte of RAM can be given to a single process. If a
program required more than that, say 2 or more MByte RAM, again
the system would have to be reconfigured.

• It would be completely impossible to change the system parameters in
both directions, i. e. allow for more than 1000 processes and some of
them using more than 1 MByte RAM.

Now, in the same way consider a harddisk of size 1 GByte and a similar
partitioning scheme that would allow 1024 (minus a few) files of up to 1 MByte
size to be written to this disk. The same problems as in the memory example
would occur: There would be a filesize limit as well as a limit on the number
of files, and changing the filesystem structure in order to either allow more or
larger files would require the disk to be newly formatted, and a change would
only increase one of these numbers while reducing the other.

This simple approach is called “fixed equal size partitioning” in both the
memory and the harddisk case, and besides the limitations already discussed
it leads to a problem called internal fragmentation: While the RAM is fully
split into partitions, i. e. there remains no unpartitioned and possibly unusable

5

i

i

“m” — 2009/4/12 — 13:55 — page 6 — #6
i

i

i

i

i

i

6 Memory Management and Filesystems

memory (that would be external fragmentation), a lot of memory will go
unused, e. g. when a process runs that needs only a few kilobytes of RAM but
still gets the whole 1 MByte. There is no way for other processes to claim
some of this unused memory because the fixed partitioning forbids this.

It is an example of contiguous1 allocation methods: Contiguity means that
all the parts of a process’ memory (or of a file on disk) are stored in con-
secutive2 frames/blocks, and also in order. So no jumps to other memory
locations or disk blocks are necessary when reading the whole file (or the pro-
cess’ whole memory) from the first to the last byte. The opposite of this in
non-contiguous allocation, and we will get to that approach in section 6.2.

Note that we use the term “disk partition” in a non-standard way; we do not
mean the logical partitions into which a disk is separated on today’s standard
computers in order to create several logical volumes (in Windows language:
drives) each of which is formatted with its own filesystem. For simplicity we
assume that a harddisk contains exactly one filesystem and that this filesystem
uses all of the disk, as it is the case on floppy disks and (some) USB sticks.
See section 6.1.4 for a few words about the classical understanding of “disk
partition”.

6.1.2 Variable-size partitioning

So far we have seen partitioning schemes where all partitions are of equal size,
which caused the two limitations in file size and file number. A little more
flexibility is introduced when we raise the equality condition: That leads us
to a new method of creating fixed partitions, but of varying sizes.

It is just a small alteration, but it already improves the situation a lot: In
the memory case, if a process is associated with a memory partition and it
wants to extend its memory usage beyond the current partition’s limits, it
can be relocated to a different (larger) partition, and on the other hand many
more processes can use the system if there is a good mix of processes with
small and large memory demands. Note that this partitioning scheme is still
fixed: At system boot-time, the memory partitions are created and cannot
be modified until the next booting (and a modification is likely to require a
recompilation of the operating system kernel).

In the same way a filesystem with fixed partitions will profit from this
modification by allowing both more and (some) larger files. The strictness of
the partitioning applies here as well: Once the disk has been formatted, the
partition (i. e.: maximum file) sizes can only be changed by reformatting the
whole disk.

1
Dictionary: engl. contiguous = dt. zusammenhängend

2
Dictionary: engl. consecutive = dt. fortlaufend

6

i

i

“m” — 2009/4/12 — 13:55 — page 7 — #7
i

i

i

i

i

i

6.1 Contiguous allocation

6.1.3 Dynamic partitioning

A lot more freedom in memory or disk space allocation is possible if the
partitioning becomes fully dynamic: This means that no partitioning occurs
at the system start or during the formatting of the disk, but instead partitions
are created as need for them occurs.

This has the effect that a lot more administrative work must be carried
out by the operating system, for example keeping an overview of free areas
of memory becomes more complicated, because whatever data structures are
used for the memory or disk allocation, they are now dynamic.

6.1.3.1 Free frame lists

The most simple approach is to keep a list of free partitions. This list will be
called a free frame list in memory management or a free block list in filesys-
tems. Typically there is a smallest possible fragment that can be allocated,
called a frame or block, and free space managements only deals with these
frames/blocks. The smaller the frame or block is, the more of them exist and
the more of them have to be handled by the free frame list.

One approach is to have a linked list that contains descriptions of free areas,
e. g. a start address and a length for each one. In the list each entry points
to the next entry when working with pointers. In order to find a free area of
a given size an algorithm will walk through this list and stop when it finds an
area of sufficient size. For this purpose it may be necessary to scan the whole
list if (in the worst case) the only fitting area is at the end of this list. When
a number of previously free frames is allocated to a process (or blocks to a
file), the list has to be modified,

• either by removing the entry if the whole lot of contiguous blocks are
allocated,

• or by modifying the entry if only a few of the blocks are allocated, and
they are located at the beginning or end of the area described by this
entry,

• or by splitting the entry in two parts, if (for whatever reason) a section
taken from the middle is allocated, leaving free areas in front of and
behind them.

If the used space is later released, it must be added to the list again, possibly
creating a list entry that has to be merged with entries describing directly
neighboring areas.

Another possibility is to work with bitmaps: For each frame/block a bit
in this bitmap defines whether it is free (0) or in use (1). Here no complex

7

i

i

“m” — 2009/4/12 — 13:55 — page 8 — #8
i

i

i

i

i

i

6 Memory Management and Filesystems

list administration (with the mentioned splitting and mergers of list entries)
is required, however allocation and release of blocks lead to modification of
several bits in the bitmap, and looking up free space of a given size means
finding a number of consecutive 0-bits in the bitmap.

Note that it does not matter at all whether we think of memory frames or
disk blocks, the concepts are identical. Differences will however appear when
thinking of storage of these lists or bitmaps: In the memory case it is obvious
that the list must also lie in memory for quick access. In the filesystem case
it might make sense to store the list in memory (and not on disk as well) in
order to speed up the lookup of free areas—but depending on the size of the
free block list, it may be too large to keep all of it in memory.

6.1.3.2 Allocation

When working with dynamic allocation of free areas, there will typically be a
choice among several free areas which are of sufficient size, and the procedure
for choosing one of them will have consequences both on performance and on
(external) fragmentation: If the decision algorithm is very complex, alloca-
tion will always take a lot of time; if it is simple, there will be many small
unpartitioned (not allocated) areas which are too small to be useful anymore,
so this external fragmentation will lead to memory or the disk filling up more
quickly than necessary.

On the following pages we will present five simple approaches to allocation
called first-fit, next-fit, best-fit, worst-fit, and quick-fit; and after that a more
advanced concept called the buddy system will be introduced.

First-fit Bla

Next-fit Bla

Best-fit Bla

Worst-fit Bla

Quick-fit Bla

6.1.3.3 Buddy system

6.1.4 A few words on Disk Partitions

As mentioned above, we have not been talking about hard disk partitions
in the sense of creating several logical volumes on a disk for use by various
operating systems (e. g. a Windows and a Linux partition) or for structuring
the disk so that different data can be stored on different partitions (e. g.

8

i

i

“m” — 2009/4/12 — 13:55 — page 9 — #9
i

i

i

i

i

i

6.1 Contiguous allocation

“drives” C: and D: for Windows or partitions /, /home, and /usr for Linux)—
now we do, because this kind of partitioning is another example for contiguous
allocation with flexible size. Most disks have a partition table as created by
Windows, Linux, DOS, and other operating systems when initializing a hard
disk. (The BSD operating systems use a different method to partition disks,
calling the partitions “slices” and the partition table “disklabel”.)

A classical partition table puts no limits on the sizes of individual partitions,
but allows only up to four (“primary”) partitions for whose administrative
data it reserves space in the first blocks of the disk. There, you basically find
the start address and the length of each partition. If more than four partitions
are needed, one of the four must be set up as an “extended partition” that
holds an additional partition table and the “logical partitions” that reside
inside the extended partition.

If we ignore logical partitions, we see that this is a simple implementation
of dynamical contiguous allocation wth flexible size; partitions can be created
and deleted, each partition has to be contiguous, and in principle the parti-
tioning also suffers from external fragmentation: If you start with a 40 GByte
disk that is partitioned into four 10 GByte partitions and you resize each of
them to 9 GByte, you end up with four unused 1 GByte areas that cannot be
used. If there was no “four partitions” limitation, the four free areas could be
made into four separate 1 GByte partitions, but never into one 4 GByte one,
since these four areas are not contiguous.

In order to change the size of a formatted partition (i. e. one with a valid
filesystem on it), always two steps are necessary, with their order depending
on whether the partition is to be extended or shrunk: The logical filesystem
must be resized and the partition itself must be resized.

• When extending a partition, the operation on the partition (and parti-
tion table) comes first, only when this is completed, can the filesystem
size be increased as well so that into grows into the newly available
space.

• When shrinking a partition, the filesystem has to be modified first, be-
cause for example files residing in the parts of the partition that is to
be removed must be relocated to a different area on the partition first.
Only then can the partition itself be resized (making the removed parts
unaccessible to the filesystem).

Note that modifying a filesystem size requires more than (possibly moving
files from an area that is to be removed, and) changing the information about
the partition size in the partition’s metadata, for example on a Unix filesystem
the free block bitmap has to be grown or shrunk as well in order to correspond
to the changed number of blocks.

9

i

i

“m” — 2009/4/12 — 13:55 — page 10 — #10
i

i

i

i

i

i

6 Memory Management and Filesystems

6.2 Non-contiguous Allocation

So far we have seen several examples for contiguously assigning memory or
disk space to processes or files. That allows for a very simple handling of
accesses, because only an absolute start address and the length of a (memory
or disk) partition must be known.

However, since this leads to strong limitations in usability, all modern op-
erating systems use a more flexible approach both for process memory and
files, assigning memory frames and harddisk blocks non-contiguously.

Non-contiguous allocation makes things more complicated, and for process
memory it is worse than for files:

• If a file consists of several, non-contiguous blocks which are spread all
over the disk, there has to be a list of blocks that tells the operating
system where to find the data. When trying to read a specific byte from
the file, the address within the file has to be translated into a disk block
and a relative address inside that block. It also means that reading a file
from beginning to end can no longer be achieved by reading several disk
blocks in their natural order, but the operating system has to jump from
one location to another all the time, so several disk head movements are
involved which speeds down the access.

• With memory things become even more complicated: Here also some
kind of table is needed that will be used for address translation, but
memory access is different from file access. A program contains a lot
of memory accesses: every (absolute) jump to another instruction in
the program code and every direct data access (where the content of
some memory address is loaded into a CPU register) and similarly each
preparation for indirect access (e. g. ld hl,0xa000; ld a,(hl); what’s
that in i386 code?) contains an address.

A process could be told the absolute address ranges of the memory locations
it was given access to, imagine it has a list like this:

1. partition 1: 0x10000–0x10FFF (4 KByte)

2. partition 2: 0x14000–0x15FFF (8 KByte)

3. partition 3: 0x20000–0x2FFFF (64 KByte)

Assume further that the program code is 6 KByte long and the rest of the
memory will be used for data (no stack in this simple example). Then the
program code will have to be split between the first and second partition, and
the data between the second and third one. (For this example we ignore that

10

i

i

“m” — 2009/4/12 — 13:55 — page 11 — #11
i

i

i

i

i

i

6.2 Non-contiguous Allocation

it might be a better approach to store all of the program code in the second
partition and use the first and third one for data, especially since the program
might not know the precise number and sizes of partitions before it actually
gets them.)

If there is a jump instruction in the program code that leads from the front
part of the code to the rear part, it will cross partition borders. Also when
the programs needs to access its data it has to be aware whether the currently
needed data reside in the second or in the third partition.

All these problems can be solved with a method called address relocation.
When using this system, at compile time a list of address references will
be generated. It lists all references to data or instruction addresses that
are used within the program code. At load time the system must know the
maximum memory demand of the program, assign memory partitions and
then use the relocation list to adjust the memory references to the concrete
partition locations.

While this means some overhead during compile and load time, it works
quite well, but only for static addresses. If the program dynamically “ac-
quires” memory using some function such as malloc(), then this function
will also have to be informed about the memory partitions and return proper
addresses.

Another problem with this approach occurs when the operating system
allows a process to be swapped out to disk and swapped in again later: At
swapping it back in, the process may be given different partitions as before,
and then all address references have to be relocated again, this time not only
considering the addresses that were stored in the relocation table, but also
the dynamically assigned addresses.

The relocation approach makes it hard to protect one process’ memory
against accesses by another process, because the address calculation in the
relocation step only guarantees that static address references are fixed at
program start; the program would however be free to access any part of the
memory unless the operating system somehow checked each memory access
against the partition list for this process. The simple start and length registers
from the contiguous case would no longer be sufficient, because there are
possibly a lot of partitions if a process uses much memory.

Note that for files a similar scheme can be adopted, and it causes much fewer
problems: typical operations on a file are seek, read and write operations, and
they will require translation of linear file positions (thinking of a file’s bytes
as numbered from 0 to n − 1 for a file size of n) to absolute disk addresses
inside the disk partitions. This translation occurs with every single access to
the file. It could be avoided by also using some kind of address relocation
as in the memory case, but the gained performance would not be worth the
extra effort, because address translation is fast in comparison to disk access.

11

i

i

“m” — 2009/4/12 — 13:55 — page 12 — #12
i

i

i

i

i

i

6 Memory Management and Filesystems

6.2.1 Virtual memory: Paging

All modern operating systems use a virtual memory management mechanism
called paging. The idea behind paging is to give each process a virtual memory
space that is addressed contiguously and linearly (starting with an address
0 and ending with an adress size − 1) that is partitioned into a set of so
called memory pages. All pages have the same size, say, 1 KByte, and they
are mapped to so called page frames which are equally sized chunks of the
real memory. With the help of a page table each access to a virtual address
is translated to a real address by first calculating to which page the address
belongs, then looking up the corresponding page frame via the page table and
finally locating the relative position within that page frame.

This approach makes compiling an application very easy: All references
to addresses, be they jump instructions or data accesses, can be stored with
absolute addresses inside the program, and no relocation takes place when
loading the program. Instead each memory address will be translated using
the page table. In order to make this fast, the CPU has to help: paging only
works properly on computers that have a memory management unit (MMU)
that takes care of the address translations: One of the CPU registers must
point to the page table, and then the rest is all being done in hardware. So
no computing capacity is wasted on the address translations.

When, for whatever reasons, locations of page frames have to be changed,
it only takes a correction of the page table to make sure that the program
continues to be runnable. This scheme also allows for individual pages to
be removed from memory altogether and stored on the hard disk for later
retrieval—this is called paging as well, and it is not to be confused with
swapping a process’ memory (meaning: writing all of it to the disk). A
process that has some of its page frames paged to disk can still be run, while
a process that was swapped to disk, must first be swapped in before it can
resume action. However the disk space reserved for paging is often called swap
space for historical reasons. E. g. the Linux operating system calls paging
partitions or files swap partitions and swap files, but it does not implement
swapping; it pages.

6.2.2 File Allocation Tables and Indirection

Somewhat similar to the way in which a page table holds information about
the page frames currently used by a process, a file allocation table keeps record
of disk areas used by a file. A thing that is shared by both methods is the
use of equal-sized partitions of the medium—in the case of hard disks they
are called blocks and typically have the size of a few kilobytes, 1, 2, 4, or 8
KByte, e. g.

For each file the operating system has to keep a list of blocks that the file’s

12

i

i

“m” — 2009/4/12 — 13:55 — page 13 — #13
i

i

i

i

i

i

6.2 Non-contiguous Allocation

data occupy. With very large files this list also becomes very large, because a
file of size 1 MByte uses 1024 blocks, if the block size is 1 KByte.

Storing the block list in the overall data structure that the operating sys-
tems keeps for administering the filesystem, is not very efficient, because in
order to allow for huge files, each such entry would have to reserve space for a
possibly very long list—even for those files that only use a few blocks. Thus
many filesystems store the block list in special data blocks. This approach is
called single indirection: From wherever the information about a certain file
is stored, entries do not point directly to a data block, but to an indirection
block that contains further pointers to several other data blocks. These en-
tries can be block numbers, since by multiplying the block number with the
block size the absolute disk address can be calculated. If it takes 2 bytes to
store a block number and a data block has size 4 KByte, then 2048 block
addresses can be stored in one indirection block. When the first indirection
block is fully used, a second one can be introduced in order to allow for even
bigger files.

Typically the administration data will not only contain pointers to indi-
rection blocks but also a few direct pointers (to data blocks) so that in the
case of small files it is possible to find all data blocks without going through
indirection blocks. Only when the number of data blocks exceeds the number
of directly stored block addresses, a first indirection block will be used.

With single indirection the maximum size of files grows a lot; however it is
still limited: If there are 20 pointers to indirection blocks and such a block
stores 2048 block numbers (as above), then this allows for 40 K data blocks or
file sizes of up to 40 K × 4 KByte = 160 MByte. By adding more and more
indirect pointers in order to allow for yet bigger files, the administrative data
for a single file grows equally; so a second level of indirection is introduced
to keep the file entries small. With double indirection there are pointers that
point to indirection blocks which link to further indirection blocks. Those
then finally point to address blocks. What we said about the number of block
addresses, remains valid in the case of double indirection, but now one double
indirection pointer allows to address 512 × 512 = 5122 (or roughly a quarter
million) data blocks.

If this is still not good enough, triple indirection or even higher levels of
indirection can be introduced: With each additional indirection step the max-
imum file size grows by the same factor (512 in the example). But notice that
it makes no point to use, say, ten or eleven layers of indirection just to be
prepared for any possible future demands on file sizes: Indirection leads to
extra accesses; in order to read a specific block from the disk whose block
number is only available through a long indirection, several blocks have to be
read from the disk. If the block is on triple indirection path, it actually takes
at least five read operations to retrieve the data: The first one is for looking

13

i

i

“m” — 2009/4/12 — 13:55 — page 14 — #14
i

i

i

i

i

i

6 Memory Management and Filesystems

Figure 6.1: Multiple indirection in Unix filesystems

up the address of the first level indirection block in the file’s administrative
data. The second to fourth are for reading the indirection blocks, and the
fifth one is the data block itself.

Whatever level of indirection is used, there are typically also indirection
entries of all lower levels: In the same way that it makes sense to keep a few
direct block number entries to speed up access to very small files, it is useful
to have one (or a few) single indirections for those medium size files that do
not require double indirection, and so on.

Figure 6.1 shows an example for multiple indirection in a Unix type filesys-
tem. What is called “inode” in the image is a special administrative entry
for a file that holds most of this file’s attributes including direct and indirect
block numbers as well as things such as owner, owning group, access rights,
but not a filename. We will come to this later when we discuss examples of
real filesystems.

6.2.3 Paging with split tables

In the same way that we found indirection to be helpful in order to decrease
the size of a file’s administrative data, classical page tables can become very
large—so large that it wastes too much memory to store them, especially since
in most cases a page table will only be used very sparsely: Most entries will
be null pointers.

So in a way that is very similar to the filesystems’ indirection concept, it is
possible to split page tables so that they will become smaller, but there will

14

i

i

“m” — 2009/4/12 — 13:55 — page 15 — #15
i

i

i

i

i

i

6.2 Non-contiguous Allocation

be more of them.

| page number | offset |

| page no. #1 | page no. #2 | offset |

For example when having a 32 bit (virtual) address that consists of a 20
bit page number and a 12 bit offset, it is possible to split the 20 page number
bits in two halves with the first halve pointing to a secondary page table in
which the second halve is used to look up the page frame.

The first ten bits in this example can be called upper page number, the last
ten bits lower page number. The effect on the page table size is reducing it to
roughly the square root, e. g. from 220 to 210 entries. If the size of one entry
were one byte, the reduced table would have exactly square root size.

Notice however that while going from a million entries to 1000, this intro-
duces 1000 secondary page tables. If a process actually used this much RAM,
all the secondary page tables would be filled, and no space would be saved.
(Actually, in that case you get an increased amount of space used for tables,
because the primary table counts extra.) But normal processes will not have
such enormous memory demands, and this saves a lot of space because sec-
ondary page tables can be created on demand—as long as a process uses only
a few kilo- or megabytes of RAM, only the first few secondary page tables
need exist.

Using such split page tables is similar to the indirection in filesystems’ data
block lists. What makes it indirect is that in order to find the corresponding
page frame for a page means no longer just looking into one page table;
instead it requires looking in the primary page table first in order to find the
right secondary page table and then looking there. So in the same way that
using indirection in filesystems increases the number of disk accesses necessary
to find a data block on the disk, introducing split page tables increases the
number of memory accesses needed for finding a page frame.

6.2.4 Translation Look-ahead Buffers and the Locality

Principle

Each memory access takes a little time, so it makes sense to use some kind of
caching mechanism because most programs will not randomly access memory
but instead access addresses which are close to one another. Think of loops
reading all the elements of an array: they will be stored consecutively. So after

15

i

i

“m” — 2009/4/12 — 13:55 — page 16 — #16
i

i

i

i

i

i

6 Memory Management and Filesystems

one access to a memory frame it is likely that further accesses to the same
frame will occur soon after the first one. This is called the locality principle.
Lookups of the same frame would mean translating the page number to a
page frame number again and again—in order to speed up this process many
memory management units contain a translation look-ahead buffer (TLA).
That is a special type of memory called associative memory which can store
page/page frame pairs and allows lookup in constant time: In order to find
the page frame for a given frame (assuming it is stored in the buffer) there
is no need to loop over the entries in the buffer, but the buffer will return
the frame number immediately if it contains the page number. If it does not,
the result is an error, and the normal lookup process will start. But finding
a frame via the TLA is orders of magnitude faster than going through the
regular tables, and this holds even more if split page tables are used.

The size of the TLA is typically very small, because those kinds of chips are
limited in their size but the locality principle will guarantee that for “well-
behaving programs” (i. e. those that respect this principle) it will be sufficient
to dramatically speed up the address translation.

Since the TLA is part of the memory management unit, it will be used
automatically by the CPU; no specific programming is necessary to activate
or use it.

Note that the page 7→ page frame mapping exists for every single process
in the system: Since each process has its own virtual memory space, it makes
no sense to combine their page tables in some kind of system-wide table. This
has consequences for the TLA as well: If it, as described so far, only stores
page and frame numbers, then every context switch to another process will
invalidate all its entries. So if the scheduler switches processes very often, this
will limit the use of the TLA. Alternatively the TLA could be constructed in
a way that maps (process id, page number) pairs to frames: That would keep
all entries valid across context switches, but with different processes always
accessing different page frames, it would only work well in a setup with either
very few processes or with a sufficiently increased TLA size.

6.2.5 Caching for Filesystems

As a TLA increases virtual memory address translation, so does caching file
access. However when implementing caching, filesystems typically do not
differentiate between disk blocks that contain administrative data (i. e. the
general file info blocks and indirection blocks containing addresses) and reg-
ular data blocks; instead all typed of blocks are stored in the cache. We will
not go into the details of caching (and possible caching strategies), but just
point out the similarity between caching disk blocks and using a TLA.

16

i

i

“m” — 2009/4/12 — 13:55 — page 17 — #17
i

i

i

i

i

i

6.2 Non-contiguous Allocation

6.2.6 Page Replacement Strategies

When memory gets full, eventually the system will have to move pages to the
disk in order to make room for other processes’ memory demands. Paging
out a page (i. e. writing it to disk and releasing the page frame that held the
page) and assigning a different process’ page to this page frame is called page
replacement. The algorithm that decides which page to page out is called a
page replacement algorithm, and it implements a page replacement strategy.
The chosen strategy is a part of the memory management system’s design,
and there are several choices.

One possible choice would be a random selection: Whenever there is need
for a free page frame (and none available) just pick any odd page frame and
page out its contents. This strategy would not be much good, but we can
think of even worse ones, e. g. always pick the very first page frame in the
RAM.

The selection process has no consequences on the overall functioning of
memory management: Even the worst strategy (and “pick the first page
frame” is a good candidate for that) will lead to a working memory man-
agement system. However, the selection process decides how efficiently the
resulting system behaves.

Before going into details, let us note that there is no direct equivalent to
page replacement in filesystems—unless you had another layer of the memory
hierarchy that is above disk access, e. g. an automatic tape backup system
with a tape robot that can write files to a tape and delete them on disk
when disk space gets low. If you had such a setup, you would move from a
CPU–cache–RAM–disk memory hierarchy to a CPU–cache–RAM–disk–tape
one, and accessing a file currently on tape would cause something that could
be called a file access fault, resulting in the system automatically fetching
the file back from tape (and keeping the requesting process blocked during
all the time until the file becomes available again). Strategies for deciding
which files to temporarily transfer from the disk to a tape would be called a
file replacement strategy and be somewhat similar to the page replacement
strategies. Distributed filesystems (or “distributed network filesystems”) that
allow files to either exist on a local machine or on a remote host’s disk do
something similar if they make file access transparent, no matter whether
things are stored locally or remotely. We will not look any further into this.
A true analog of page replacement would operate on disk block level, i. e.
remove individual blocks from the disk in order to store them elsewhere, and
that is something that does not make much sense since files are typically
accessed fully when they are accessed at all. It might however make sense
to keep the first block of a file on disk when removing the file, because often
only the first block of a file is read in order to find out its filetype (think of

17

i

i

“m” — 2009/4/12 — 13:55 — page 18 — #18
i

i

i

i

i

i

6 Memory Management and Filesystems

“magic numbers”).
A way of measuring a page replacement strategy is the average number of

page faults that it causes. It is not possible to truly calculate this number,
because it depends on so many things, e. g.:

• The absolute memory demands depend on all the processes currently
running on a system.

• Even if sample situations (test cases) are created that consist of prede-
fined processes with fixed start times and memory requirements (such as:
process will access its page number n at instruction i) it is not possible
to predict when precisely this process will execute this instruction—
scheduling the processes will always result in slightly different orders of
execution each time the test case is run.

So all we can do is think of theoretical properties of replacements strategies
and, when implementing a strategy, observe its effetcs on a number of test
cases which are tested several times in order to calculate an average number
of page faults for each test case. Looking at the design of a strategy will
however allow us to make some principle predictions.

6.2.6.1 FIFO Page Replacement

A simple approach to page replacement is using a FIFO (first in, first out) list
that keeps record of pages as they come into memory (either by being newly
created, e. g. because a new process was started, or by being brought back in
from disk after they had been swapped out earlier). The list can grow up to a
size that is determined by the number of available page frames in the system’s
memory. When this limit is reached, the list will be chopped from the top:
The page that is first in the list is removed and paged out. If the owning
process tries to access this (paged-out) page again, a page fault occurs, and
the memory manager has to page it back in, adding it at the end of the FIFO
list.

This approach is simple because administering a FIFO list is simple, and
selecting the next page to be paged out only requires reading the list head and
removing it. However it has the problem of totally ignoring that some pages
are accessed much more frequently than others. All pages travel from the list
end to the list head at equal speed as pages are continuously paged out and
back in, and for constantly and frequently used pages this means they will
be paged out and in very often. It would make sense to be informed about
the access frequency and keep the more frequently used pages in memory all
the time, resulting in a much increased overall performance (with less page
faults).

18

i

i

“m” — 2009/4/12 — 13:55 — page 19 — #19
i

i

i

i

i

i

6.2 Non-contiguous Allocation

6.2.6.2 Second Chance Algorithm

An attempt to bring the frequency of page access into the FIFO strategy is the
introduction of a “second chance”: The idea to set an access bit for a page
each time it is accessed by its owning process. This is something that the
MMUs of most processors can do automatically—which is important because
it reduces the necessary efforts of the memory management system.

The modification of the FIFO strategy is the following:

• A simple FIFO list of all pages works in principle as in the FIFO case.

• The MMU sets bits for each page access, as described above.

• When a page frame has to be freed, the system looks at the list entry (as
before). If the page at the list end has its access bit set, it is not paged
out, but instead moved to the list head, and its access bit is cleared: it
gets a second chance.

So the second chance algorithm selects the page from the subset of pages with
unset access bits that is the last in the FIFO list. Not using the chance then
means that after being spared when first found at the list end, it will travel
all the way from list head to list end without being accessed another time.
Then the memory manager will page it out.

6.2.6.3 Linux’ Page Replacement Strategy

Linux uses a modified LRU strategy:

The key question faced by the swapping subsystem is always
the same. Which pages can be swapped out to ensure maximum
benefits at minimum cost to the system? The kernel uses a mixture
of the ideas discussed earlier and implements a rough-grained LRU
method that makes use of only one hardware feature – the setting
of an accessed bit following a page access – because this function
is available on all supported architectures and can be emulated
with little effort.

In contrast to the general algorithms, the LRU implementation
of the kernel is based on two linked lists that are referred to as the
active and the inactive list (separate lists exist for each memory
zone in the system). As the two names imply, all the pages in
active use are on the one list, while all inactive pages that may
be mapped into one or more processes but are not very frequently
used are held on the other. To distribute the pages between the
lists, the kernel performs a regular balancing operation that de-
termines – by means of the above accessed bit – whether a page is

19

i

i

“m” — 2009/4/12 — 13:55 — page 20 — #20
i

i

i

i

i

i

6 Memory Management and Filesystems

regarded as active or inac- tive, in other words, whether or not it
is frequently accessed by the applications in the system. Transfers
between the two lists are possible in both directions. Pages can
be transferred from active to inactive and vice versa. However,
transfer does not take place after every single page access but at
longer intervals.

In the course of time, the least frequently used pages collect at
the end of the inactive list. When there is a memory shortage, the
kernel selects these pages for swap-out. Since these pages have
been little used so far, the LRU principle dictates that this will
prove least disruptive to system operation.

(quoted from Wolfgang Mauerer, Linux Kernel Architecture, p. 1029)

6.2.7 Organization of Swap Space

Some operating systems to not page out individual pages, but several con-
tiguous pages, for example Linux calls these clusters, typically consisting of
256 pages that are contiguous in the sense that they represent a contiguous
set of virtual memory addresses from the process’ linear view on memory.

Ideally these clusters are stored contiguously in the swap space3 When
re-paging in a page this contiguous storage is useful because it allows the
system to quickly read more than just the one page requested (assuming that
the following pages are going to be requested in the near future as well). If
the (logically) contiguous pages were stored at random positions in the swap
space, paging in such a set of pages would require several seek operations on
the disk (and they slow down this process).

3Note that we call the disk areas used for storing paged-out memory pages “swap space”

despite our earlier explanation that it is in fact not swap space because it is not used

by a swapping mechanism but by a paging mechanism. We just follow the general use

of calling this swap space.

20

