s

Scheduling «

Fair Share Implementation (2)

def find_min_priority():

mnval = 9999
for p in process_queue:
if priorities[p] < minval:
mnval = priorities[p]
mnproc = p

process_queue. renove(m nproc)
process_queue. append(m nproc)
return mnproc

def group_of (p):

for i in range (O, groupcount):

if pingroups[i]: return i

Hans-Georg EBer, FH Miinchen

Operating Systems I, WS 2006/07

def recal culate():

proc_cpu_util[active] += 60
g = group_of (active)
group_cpu_util[g] += 60

for g in range(O, groupcount):
group_cpu_util[g] /=2

for p in processes:
g = group_of (p)
proc_cpu_util[p] /=2
prio = base_priorities[p]
+ int(proc_cpu_util[p] / 2)
+ int(group_cpu_util[g] /
(4 * weight[g]))
priorities[p] = prio
return

4. Scheduling (4) — Slide 3

Fair Share Implementation (1)

processes = [1,2, 3]

process_queue = [1,2, 3]
base_priorities = {1:60, 2:60, 3:60}
groups = [[1], [2,3]]

weight = [0.5, 0.5]

runtime = 30

proccount = | en (processes)
groupcount = |en (groups)
activity_log =[]
seconds = 0
priorities = {}
proc_cpu_util = {}
group_cpu_util =]
for p in processes:
priorities[p] = base_priorities[p]
proc_cpu_util[p] =0

for i in range(0, groupcount):
group_cpu_util.append(0)

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07

def print_status():
print " " 9% seconds,
for p in processes:
prio = priorities[p]
pcpu = proc_cpu_util[p]
gcpu = group_cpu_util
[group_of (p)]
print "
% (prio, pcpu, gcpu),
return

4. Scheduling (4) — Slide 2

Fair Share Implementation (3)

print "
for p in processes:
print " " %p,
print
print_status()
for i in range(O,runtine):
active = find_mn_priority()
print
active

activity_l og. append(active)
seconds += 1

recal cul ate()
print_status()

print

Hans-Georg Eer, FH Miinchen

Operating Systems I, WS 2006/07

print

ol dprocess = 0
for p in processes:

st =
if group_of(p) != group_of (ol dprocess):
print " "
print " " %p,
for i in range(O,runtine):
if activity_log[i] ==
st += "x"
el se:
st += "-"
print st

ol dprocess=p

4. Scheduling (4) — Slide 4

Fair Share Implementation (4)

> ./fair-share. py

Time | Process 1 | Process 2 | Process 3
0 60 0 O | 60 O O | 60 0O O | -> Scheduler aktiviert P. 1
1 90 30 30 | 60 0 O | 60 O O | -> Scheduler aktiviert P. 2
2 74 15 15 | 90 30 30 | 75 0 30 | -> Scheduler aktiviert P. 1
3 96 37 37 | 74 15 15 | 67 0 15 | -> Scheduler aktiviert P. 3
4 78 18 18 | 81 7 37 | 93 30 37 | -> Scheduler aktiviert P. 1
5 98 39 39 70 3 18 76 15 18 -> Scheduler aktiviert P. 2
6 78 19 19 94 31 39 82 7 39 -> Scheduler aktiviert P. 1
7 98 39 39 76 15 19 70 3 19 -> Scheduler aktiviert P. 3
8 78 19 19 82 7 39 94 31 39 -> Scheduler aktiviert P. 1
9 98 39 39 70 3 19 76 15 19 -> Scheduler aktiviert P. 2
10 78 19 19 94 31 39 82 7 39 -> Scheduler aktiviert P. 1
11 98 39 39 76 15 19 70 3 19 -> Scheduler aktiviert P. 3
12 78 19 19 82 7 39 94 31 39 -> Scheduler aktiviert P. 1
13 98 39 39 70 3 19 76 15 19 -> Scheduler aktiviert P. 2
14 78 19 19 94 31 39 82 7 39 -> Scheduler aktiviert P. 1
15 98 39 39 76 15 19 70 3 19 -> Scheduler aktiviert P. 3
16 78 19 19 82 7 39 94 31 39 -> Scheduler aktiviert P. 1
17 98 39 39 70 3 19 76 15 19 -> Scheduler aktiviert P. 2
18 78 19 19 94 31 39 82 7 39 -> Scheduler aktiviert P. 1
19 98 39 39 76 15 19 70 3 19 -> Scheduler aktiviert P. 3
20 78 19 19 82 7 39 94 31 39 -> Scheduler aktiviert P. 1
21 98 39 39 70 3 19 76 15 19 -> Scheduler aktiviert P. 2
22 78 19 19 94 31 39 82 7 39 -> Scheduler aktiviert P. 1
23 98 39 39 76 15 19 70 3 19 -> Scheduler aktiviert P. 3
24 78 19 19 82 7 39 94 31 39 -> Scheduler aktiviert P. 1
25 98 39 39 70 3 19 76 15 19

NEW GROUP

Process 1. X-X-X-X-X-X-X-X-X-X-X-X-X

NEW GROUP

Process 2: -X---X---X---X-=-X---X---

Process 3. ---X---X---X---X---X---X-

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 5

Fair Share Implementation (6)
Equal-sized groups

processes = [1,2,3,4,5, 6]

base_priorities = {1:60, 2:60, 3:60, 4:60, 5:60, 6:60}
groups = [[1,2,3], [4,5,6]]

weight = [0.5, 0.5]

NEW GRCOUP
Process 1. x----- X-=---- X-=---- X-=---- X----- X----- X---
Process 2: --Xx----- X----- X----- X----- X----- Xewoon X-
Process 3: ----X----- X----- X----- X----- X-=--- X-----
NEW GROUP
Process 4:
Process 5:
Process 6:

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 7

Fair Share Implementation (5)
More processes in one group

processes = [1,2,3,4,5]

base_priorities = {1:60, 2:60, 3:60, 4:60, 5:60}
groups = [[1], [2,3,4,5]]

wei ght = [0.5, 5]

NEW GROUP

Process 1: X-X--X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X
NEW GROUP

Process 2: -x------ X-=------ X-==m--- X--mmmm- Xemmmmm
Process 3: ---X------ X-=--=---- N p— Xemmmm e Xem o=
Process 4: ----X------- X==----- X--mmm-- R X---
Process 5: ------ X-==--=--- X-mmmm - X-mmmm- Xemmmmm - X-

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 6

Fair Share Implementation (7)
Three groups with differently many processes

processes = [1,2,3,4,5,6,7]

base_priorities = {1: 60, 2:60, 3:60, 4:60, 5:60, 6:60, 7:60}
groups = [[1], [2,3], [4,5,6,7]]

wei ght = [0.33, 0.33, 0.33]

NEW GROUP
Process 1: X--X--X--X--X--X--X-=-X--X--X--X--X--X--X--X--X--X- (34 Prozent)
NEW GROUP

Process 2: Prozent)
Process 3: Prozent)
NEW GROUP
Process 4: Prozent)
Process 5: Prozent)
Process 6: Prozent)
Process 7: Prozent)
Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 8

Shares as upper / lower limit

Two possibilities
* Shares define upper limit:
System guarantees that no process receives

more CPU time than it deserves (as long as
system would not become idle otherwise)

*Shares define lower limit,
i.e. a guaranteed property:
System assures that each process receives
exactly the promised part of the compute time
(or more, if possible)

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 9

Classifications of
Multiprocessor Systems

* Loosely coupled multiprocessor

- Each processor has its own memory and
I/O channels

* Functionally specialized processors
- Such as /O processor
- Controlled by a master processor
* Tightly coupled multiprocessing
- Processors share main memory
- Controlled by operating system

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 11

Scheduling on Multi-
Processor-Systems

Slides are (partially) based
on W. Stallings, ch. 10

Independent Parallelism

* Separate applications
* No synchronization

* More than one processor is available
- Average response time to users is less

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 12

Coarse and Very Coarse-
Grained Parallelism

* Synchronization among processes at a
very gross level

* Good for concurrent processes running
on a multiprogrammed uniprocessor

- Can by supported on a multiprocessor with
little change

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 13

Fine-Grained Parallelism

* Highly parallel applications
* Specialized and fragmented area

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 15

Medium-Grained Parallelism

* Parallel processing or multitasking within
a single application

* Single application is a collection of
threads

* Threads usually interact frequently

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 14

Granularity — overview

granularity description synchonisation
intervall

parallelism inherent in single

fine instruction streams <20
medium paralllel processing within one single 20-200
application
coarse multitasking of concurrent processes 200-2.000

in a multiprogramming environment
distributed processing across

very coarse |network nodes to form a single 2.000-1.000.000
computing environment
independent |several unrelated processes -

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 16

Scheduling

* Assignment of processes to processors

* Use of multiprogramming on individual
processors

 Actual dispatching of a process

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 17

Assignment of Processes to
Processors (2)

* Global queue
- Schedule to any available processor

* Master/slave architecture

- Key kernel functions always run on a particular
processor

- Master is responsible for scheduling
- Slave sends service request to the master

- Disadvantages
* Failure of master brings down whole system
* Master can become a performance bottleneck

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 19

Assignment of Processes to
Processors (1)

* Treat processors as a pooled resource
and assign process to processors on
demand

* Permanently assign process to a
processor

- Dedicate short-term queue for each
processor

- Less overhead

- Processor could be idle while another
processor has a backlog

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 18

Assignment of Processes to
Processors (3)

* Peer architecture

- Operating system can execute on any
processor

- Each processor does self-scheduling

- Complicates the operating system

* Make sure two processors do not choose the
same process

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 20

Process Scheduling

* Single queue for all processes
* Multiple queues are used for priorities

 All queues feed to the common pool of
processors

 Specific scheduling disciplines is less
important with more than on processor

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 21

Multiprocessor Thread
Scheduling (1)

* Load sharing

- Processes are not assigned to a particular
processor

* Gang scheduling

- A set of related threads is scheduled to run
on a set of processors at the same time

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 23

Threads

* Executes separate from the rest of the
process

* An application can be a set of threads
that cooperate and execute concurrently
in the same address space

» Threads running on separate processors
yields a dramatic gain in performance

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 22

Multiprocessor Thread
Scheduling (2)

* Dedicated processor assignment

- Threads are assigned to a specific
processor

* Dynamic scheduling

- Number of threads can be altered during
course of execution

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 24

Load Sharing Gang Scheduling

e Load is distributed evenly across the * Simultaneous scheduling of threads that
processors make up a single process

* No centralized scheduler required * Useful for applications where

« Use global queues performance severely degrades when

any part of the application is not running
* Threads often need to synchronize with

each other
Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 25 Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 27
Disadvantages of Load Scheduling Groups
Sharing
* Central queue needs mutual exclusion mrmbreen prmy e
roup roup roup sroup
- May be a bottleneck when more than one - el
processor looks for work at the same time "y ™ o e
* Preemptive threads are unlikely resume - o . .
execution on the same processor i e - -
- Cache use is less efficient e - o pre e
* If all threads are in the global queue, all 5% Waste 15% Waste
threads of a program will not gain
access to the processors at the same Scheduling groups with 4 / 1 threads

time

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 26 Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 28

Gang Scheduling: Performance

900 Comparison of performance of
Gang Scheduling and regular
800 Unix Scheduling for a Gaussian
700 Elimination benchmark on a
12 CPU Digital Alpha 8400.
500 During the tests there were
w about 20 runnable threads
% 500 belonging to different programs
|
. 400 -
=
300
200 = Gang
Scheduled
100 - m Not Gang
Scheduled
0 4
Thread Count
Picture: http://www.lInl.gov/asci/pse_trilab/sc98.summary.html
Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 29

Dynamic Scheduling

* Number of threads in a process are altered
dynamically by the application
* Operating system adjust the load to improve
use
- Assign idle processors
- New arrivals may be assigned to a processor that
is used by a job currently using more than one
processor
- Hold request until processor is available

- New arrivals will be given a processor before
existing running applications

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 31

Dedicated Processor

Assignment
* When application is scheduled, its
threads are assigned to a processor
* Some processors may be idle
* No multiprogramming of processors

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 30

Example: K42 (1) o

* Linux-compatible OS for
machines with hundreds of s
CPUS API/ABI

* object-oriented; OS calls
implemented as IPC calls

Application
Object

Application
Object

Linux Libraries/glibc

Linux Emulation

K42 Operating System Libraries

* two scheduling levels e \(gy
* thread scheduling: - Nome T
completely in user mode Server SEET e

* kernel scheduler:
- manages so called dispat-
chers which in turn man-

Kernel

age threads (often: one
dispatcher per process);

- runs independently on
each CPU

Hans-Georg Eer, FH Miinchen

Memory Manager

File Cache File Cache
Manager Manager

Linux Device Drivers/Internet Protocol Stack

Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 32

Processor 3

Example: K42 (2)

Processor 2

Processor 1

Processor 0

N
/
v c !
N ;
. 58
Dispatchers
Resource
S Domains
,,,,,, -
d ¥
g ‘
P il ~.
| e
S . ’

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 33

Example: K42 (4)

Process has the choice:

- real multitasking -> use several dispatchers
- only programming comfort of threads
-> one dispatcher is enough

Several thread libraries for programmers, including

POSIX threads

K42 Scheduler: http://www.research.ibm.com/

K42/white-papers/Scheduling.pdf (2002)

Introduction to K42: http://www.research.ibm.com/

journal/sj/442/appavoo.pdf

Hans-Georg EBer, FH Miinchen

Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 35

Example: K42 (3)

* Thread Migration:
K42 thread scheduler implements load balancing by
migrating threads from busy to idle dispatchers

* Kernel (in special situations) moves dispatchers to
different CPUs

* Kernel scheduler activates resource domains
(within a domain: dispatchers in a ring)

* also allows Gang Scheduling (see processes P, R)

* Dispatcher can block individual threads (e.g. for
page fault or 1/0) without blocking itself

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (4) — Slide 34

