Scheduling o)

Multiprocessor Thread
Scheduling (1)

* Load Sharing

- no (permanent) assignment of CPUs to
processes

* Gang Scheduling

- a humber of threads (that belong together)
gets an according number of CPUs by the
scheduler simultaneously

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (5) — Slide 3

Threads

* When handling threads: Treat execution
aspect and the other process properties
separately

 Application can consist of a number of
threads which cooperate and simultane-
ously run in the same address space

* Threads (of one process) that run on
different CPUs can dramatically increase
process performance

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (5) — Slide 2

Multiprocessor Thread
Scheduling (2)

* Dedicated CPU allocation
- threads are a assigned to a specific CPU
* Dynamic scheduling

- number of threads can change during
program execution

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (5) — Slide 4

Load Sharing

* distribute compute-load uniformly across
all CPUs

* no centralized scheduler needed
* uses global queue(s)

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (5) — Slide 5

Gang Scheduling

* simultaneous scheduling of Threads
which belong to one process

* useful for applications in which
performance suffers immensly when any
part (thread) is not active

* threads must often synchronize

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (5) — Slide 7

Disadvantages of Load Sharing

* central queue requires mutual exclusion

- can be a bottleneck when more than one
CPU searches for work at the same time

* preemptive threads are likely to change
the CPU often

- cache usage is less efficient

* when all threads are in the global queue,
it is unlikely that all threads of one
process are scheduled simultaneously

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (5) — Slide 6

Scheduling Groups

Uniform Divislon Divislon by Weights
Group 1 Group 2 Group 1 Group 2

PE1 PE1

PE2 Idle PE2 Idle

PE2 Idle PE3 Idle

PE4 ldle PE4 Idie
Time V2 12 45 Vs

37.5% Waste 15 % Waste

Scheduling groups with 4 / 1 threads

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (5) — Slide 8

Gang Scheduling: Performance

900 performance Comparison of
Gang Scheduling and normal
800 Unix Scheduling for a Gauss
700 Elimination benchmark on a 12-
CPU-Digital Alpha 8400. During
500 the test there were approx. 20
w) runnable threads belonging to
% 500 other programs.
|
. 400 -
=
300
200 = Gang
Scheduled
100 - m Not Gang
Scheduled
0 4
Thread Count
Picture: http://www.lInl.gov/asci/pse_trilab/sc98.summary.html
Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (5) — Slide 9

Dedicated CPU Allocation (2)

7
FFT

0 [O > A Matmul
5 v

=] ~

T4l v

2. -~

) Situation: >~
3 - 16-CPU-machine

- two compute processes (FFT: Fast Fourier Transformation,
Matmul: matrix multiplication) can split their calculations
into variably many threads

- As long as they create less than 8 threads (i.e. total # threads
< # CPUs), performance increases - afterwards no longer

. | I | | | | | | | I L Il | | 1 |] | BRI

l | L |
§) 3 4 5 6 7 8 91011121314151617 18192021 223 %

Figure 10.3 Application Speedup as a Function of Number of Processes [TUCK89]

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (5) — Slide 11

Dedicated CPU Allocation (1)

* when the scheduler picks a process, it
schedules each of its threads on one
CPU

* some CPUs may be idle
* mo multitasking on the CPUs

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (5) — Slide 10

Dynamic Scheduling

* number of threads (of one process) can change
dynamically: process creates new threads and
destroys them - depending on the resources that
the operating system provides

* operating system adjusts the load in order to
optimize CPU utilization

- idle CPUs are scheduled to run threads

- new processes can receive a CPU that is currently used
by a process having several CPUs

- ignore request until a CPU becomes available

- new processes receive a CPU with higher priority than
already running applications do

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (5) — Slide 12

Example: K42 (1)

Hans-Georg EBer, FH Miinchen

Linux-compatible OS for
machines with hundreds of
CPUs

object-oriented; OS system
calls are IPC calls

two scheduler levels

thread scheduling: complete-
ly handled in user mode

kernel scheduler
- manages so called
dispatchers which in turn
manage the threads (often:
one dispatcher per process)

- runs independently on each
CPU

Applications

Application
Object

Application
Object

Linux

API/ABI Linux Libraries/glibc

Linux Emulation

K42 Operating System Libraries

Operating Systems I, WS 2006/07

File Name Linux
Server Server File
Server
Kernel
Memory Manager

File Cache File Cache
Manager Manager

Linux Device Drivers/Internet Protocol Stack

4. Scheduling (5) — Slide 13

Example: K42 (3)

* Thread Migration:
K42 thread scheduler does Load Balancing, by
migrating threads from busy dispatchers to idle ones
* kernel may, as an exception, also migrate
dispatchers to a different CPU
* kernel scheduler activates resource domains
(inside one domain: dispatchers in a circle)

* does Gang Scheduling (see processes P,R)

* dispatcher can cope with single threads blocking
(e.g. for page faults or I/O), without also blocking

Hans-Georg EBer, FH Miinchen

Operating Systems I, WS 2006/07 4. Scheduling (5) - Slide 15

Example: K42 (2)

Hans-Georg EBer, FH Miinchen

Processor 3

Processor 2

Processor 1

Processor 0

X Process
Dispatchers

Resource
Domains

Operating Systems I, WS 2006/07

4. Scheduling (5) — Slide 14

Example: K42 (4)

processes have a choice:

- real multitasking -> use several dispatchers
- only programming comfort of threads -> one
dispatcher is enough

miscellaneous thread libraries for programmers,

including POSIX threads

K42 scheduler: http://www.research.ibm.com/

K42/white-papers/Scheduling.pdf (2002)

introduction to K42: http://www.research.ibm.

com/journal/sj/442/appavoo.pdf

Hans-Georg Eer, FH Miinchen

Operating Systems I, WS 2006/07 4. Scheduling (5) — Slide 16

Linux O(1)
Scheduler

Linux O(1) Scheduler (2)

Causes (in kernel 2.4) =

* one common queue for all =

processes on all CPUs; i
no sorting in that queue

* scheduler must search whole 7 el
queue in order to find the
next process to schedule

* one single lock for the
runqueue
-> one CPU accessing the queue blocks access

for all further CPUs
* result: schedule action very complex

Bild: Linux Journal,
http://www.linuxjournal.com/node/7178/

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (5) — Slide 19

Linux O(1) Scheduler (1)

* change with Linux kernel 2.6:
new scheduler which remedies some problems
of the old 2.4.x scheduler:

* schedule time was (linearly) dependent on the
number of processes, i.e. O(n)
-> poor performance with very many processes

* poor performance on SMP machines

Linux O(1) Scheduler (3)

Kernel 2.4

* processes not bound to a CPU, assignments
random (no processor affinity)
-> processes change CPUs regularly
-> poor utilization of CPU caches

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (5) — Slide 20

Linux O(1) Scheduler (4)

Kernel 2.6: new O(1) Scheduler with the
following features:

* O(1) scheduler: time required for selecting the
next process (for one CPU) is constant —
independent on the number of processes

* CPUs don't block one another in case of
simultaneous scheduling decisions

*load balancer distributes compute-load
uniformly across several CPUs

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 4. Scheduling (5) — Slide 21

