5. Synchronization (2)

5. Synchronization
5.3 Sync methods (cont'd)

Test-and-Set-Lock (TSL) (2)

* TSL must handle two things:

- disable interrupts, so that the test-and-set action will
not be interrupted by a different process (that was
picked by the scheduler)

- in case of more than one CPU it must block access
to the memory bus so that no process on a different
CPU (which does not have interrupts disabled) can
access the same variable

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 3

Test-and-Set-Lock (TSL) (1)

* machine instruction (e.g. called TSL = Test and
Set Lock), which atomically reads and sets a
lock variable, i.e., without being interrupted in the
meantime.

enter:

t sl register, flag ; copy variable value into register and
; then set variable to 1

cmp register, 0 ; was the variable 0?
jnz enter ; hot O: Lock was set, therefore loop
ret
leave:
mov flag, 0 ; save 0 in flag: free lock

ret

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 2

Active and passive Waiting (1)

* active / busy waiting
— execution of a loop until a variable holds a certain
value.
- the thread is ready and occupies the CPU.

- Variable must be set by a different thread.

* (big) problem, if the other thread terminates

* (big) problem, if the other thread never sets the variable
- e.g. because for priority reasons it is never scheduled

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 4

Active and passive Waiting (2)

* passive waiting (sleep and wake):
- a thread blocks and waits for an event that
will set it back to the ,ready” state.
- the blocked thread wastes no CPU time.
- a different thread must cause the event.
* (smaller) problem if the other thread terminates.

- when the event occurs, the blocked thread must be
wokenup, e.g.

* explicitely by another thread, or
* through mechanisms of the operating system.

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 5

Producer Consumer Problem (2)

* Synchronization

- Don't ovefrfill the buffer:
when the buffer is full, the producer must wait,
until the consumer has taken an item out of the
buffer (thus freeing one space) - then it can go
on.

- Don't read from empty buffer:
when the buffer is empty, the consumer must
wait until the producer has stored an item in the
buffer; then it can continue.

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 7

Producer Consumer Problem (1)

* in the producer consumer problem (bounded
buffer problem) there are two cooperating
threads:

- the producer stores information items in a
bounded buffer.

- the consumer reads those items out of the
buffer.

next write position

T

next read position

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 6

Producer Consumer Problem (3)

* Implementation with passive waiting:

- a shared variable ,count” counts the occupied
positions in the buffer.

- when the producer stores an item in the buffer and
it has previously been empty (count == 0), it will
wake up the consumer;
in case of a full buffer it blocks (goes to sleep).

- when the consumer retrieves an item from the
buffer and it has previously been full
(count == max), it wakes up the producer;
in case of an empty buffer it blocks (goes to sleep).

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 8

Producer Consumer Problem
with sleep / wake

#define N 100 Il # buffer size
int count = O; /I # occupied positions in the buffer

producer () {

while (TRUE) { /I infinite loop
produce_item (item); /I create something for the buffer
if (count == N) sl eep(); Il if buffer full: sleep
enter_item (item); /I store in the buffer
count = count + 1, /I increment # occupied positions
if (count == 1) wake(consumer); // was the buffer empty before?

}
}

consumer () {

while (TRUE) { /I inifinte loop
if (count == 0) sl eep(); /I if buffer empty: sleep
remove_item (item); /I retrieve item from the buffer
count = count - 1; /I decrement # occupied positions
if (count == N-1) wake(producer); // was the buffer full?
consume_item (item); /I do something with the item
}
}
Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 9

Deadlock problem with
sleep / wake (2)

* Cause of the problem:
wakeup signal for a — not yet - sleeping process
is ignored

* Wrong Order Of CONSUMER PRODUCER
execuuon n=read(count);
* try to remember . produce_item();
. n=read(count);
wakeup call) F n=0)
. n=n+1;
for Iate r . write(n,count);
. ~¢——— wake(VERBRAUCHER);
usage...
/* n=0 */
sl eep();
Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 11

Deadlock problem with
sleep / wake (1)

* program contains a race condition that can lead
to a deadlock, e.g. the following way:

- consumer reads counter (with value 0)
- context switch -> producer

- producer puts an item into the buffer, increases the
counter and wakes up the consumer, since counte
was 0.

- consumer goes to sleep since it still remembers the
counter to be 0 (which was incremented in the
meantime).

- producer fills the buffer and goes to sleep as well

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 10

Deadlock problem with
sleep / wake (3)

* solution attempt: system calls sleep und wake
use a ,wakeup pending bit":
- when wake()-ing a non-sleeping thread, set its
wakeup pending bit.

- when sleep()-ing check the thread's wakeup
pending bit - if it is set, don't put the thread to
sleep.

but: solution cannot be generalized (several
synchronized threads might need extra pending
bits)

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 12

Semaphores (1)

a semaphore is an integer (counter) variable that
can be used as follows:

* semaphore has a defined initial value N
(,number of available resources®).

* when requesting a semaphore
(P or Wait operation):
- decrease semaphore value by 1 if it is positive,

- block thread and put it into a queue if the
semaphore value is 0.

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 13

Semaphores (3)

* variant: negative semaphore values

- semaphore counts number of waiting threads

- request (wait):

* decrement semaphore value by 1

* block thread and put it into a queue when the semaphore
value is < 0.

- release (signal):
* wake up thread in the queue (if it is non-empty)

* increment semaphore value by 1

Hans-Georg EBer, FH Miinchen

Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 15

Semaphores (2)

* when releasing a semaphore
(V or Signal operation):
- wake up one thread in the queue if it is non-empty,

- increment semaphore value by 1 (when there is no
thread waiting for the semaphore)

* code always looks like this:
wait (&sem);

/* Code that uses the resource */
signal (&sem);

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 14

standard variant:
semaphore can only
have values > 0

Semaphores (4)

wai t (sem) {
if (sem>0)
sem--;
else BLOCK_CALLER;
}

signal (sem) {
if (P in QUEUE(sem)) {
wakeup (P);
remove (P, QUEUE);
}

else sem++;

}

variant: semaphore
also negative,
memorizes size of
the queue

Hans-Georg Eer, FH Miinchen

wait (sem) {
if (sem<1)
BLOCK_CALLER;
sem--;

}

signal (sem) {
if (P in QUEUE(sem)) {
wakeup (P);
remove (P, QUEUE); }
sem++;

}

Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 16

Semaphores (5): Example

* threads A, B, C depend
on a result of thread D

* semaphore s counts
available results

* A, B, C call wait()
* D calls signal()

® Processor Picture: Stallings
I [o 1]
emaphore cady Suspended List Ready List
= @
el Jﬂﬂ_\b—‘ |—> q—l

Suspended List Semaphore Ready List Suspended List cmaphore Ready List

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 17

Mutexes (2)

Mutex (mutual exclusion) = binary semaphore,
i.e. a semaphore that only used values 0/ 1

wai t (mutex) { signal (mutex) {
if (mutex==1) if (P in QUEUE(mutex)) {
mutex=0; wakeup (P);
else BLOCK_CALLER; remove (P, QUEUE);
} }

else mutex=1;

}

new interpretation: wait = lock
signal = unlock

mutexes for exclusive access (critical regions)

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 19

Mutexes (1)

* Mutex: boolean variable (true/false) that
synchronizes access to shared data

- true: access allowed
- false: access forbidden

* blocking: a thread which attempts access while
another thread already accesses the data will block
- queue

* when releasing:

- queue contains thread(s) = wake up one of them
- queue empty: set mutex to true

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 18

Blocking or Non-blocking?

* operating systems cann implement mutexes
and semaphores blocking or non-blocking

* blocking:
when an attempt to decrement the counter fails
- warten

* non-blocking:
when the attempt fails
- possibly do something else
(yet still don't enter the critical region)

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 20

Atomic Operations

* the wait() and signal() operations for mutexes /
semaphores must be implemented atomically:

during the execution of wait() / signal() no other
thread must be scheduled

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 21

Producer Consumer Problem
with Semaphores and Mutexes

typedef int semaphore;

semaphore mutex = 1; /I synchronizes buffer access
semaphore empty = N; /I counts free spaces in buffer
semaphore full = 0; /I counts used spaces in buffer
producer () {
while (TRUE) { /I inifinite loop
produce_item(item); /I create something for the buffer
wai t (empty); /I decrement empty spaces or block
wai t (mutex); /I enter critical region
enter_item (item); /I store item in the buffer
signal (mutex); /I leave critical region
signal (full); /I increase used spaces; possibly wake consumer
}
}
consumer () {
while (TRUE) { /I inifinite loop
wait (full), /I decrement used spaces or block
wai t (mutex); /I enter critical region
remove_item(item); /I withdraw item from the buffer
signal (mutex); /I leave critical region
signal (empty); /I increase free spaces, possibly wake producer
consume_entry (item); // consume the item
}
}
Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 23

Queues

* mutexes / semaphores manage queues (for the
processes that were put to sleep, waiting on the
mutex / semaphore)

* when calling signal(), a process might have to
be woken up

* selection of the process to wake up is a task
that is comparable with the scheduler's
selection of a process to get the CPU next

- FIFO: strong semaphore / mutex
- random: weak semaphore / mutex

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-27 5. Synchronization (2) — Slide 22

