s

7. Deadlocks (1)

home/esser/Daten/Dozent/Folien/bs-esser-21-english.odp

Deadlock: right before left (1)
* classical example: right before left crossing

|

' who can go first?

| potential deadlock
|

| [

. A
T

Wl

"
|
|
|

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2007-01-15 7. Deadlocks (1) — Slide 3

What is a Deadlock?

* a set of processes / threads is in a deadlock
situation when:

- each process waits for a resource which is locked
by another process of this set

- none of the resources can be released because the
locking process is blocked (waiting itself)

 processes in a deadlock situation will sit there
forever

» deadlocks must be avoided!

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 —2007-01-15 7. Deadlocks (1) — Slide 2

Deadlock: right before left (2)

I B
| |
I =
N N
T N
= =
! 'S
| |
' 'm

Deadlock, but recoverable: Deadlock, not recoverable:

one or more cars can go participating cars cannot go
backwards back

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 —2007-01-15 7. Deadlocks (1) — Slide 4

Deadlock: right before left (3)

Analysis:

crossing consists of quadrants

ABCD

Hans-Georg EBer, FH Miinchen

car 1 requires C, D
car 2 requires D, A
car 3 requires A, B
car 4 requires B, C

Operating Systems I, WS 2006/07 - 2007-01-15

7. Deadlocks (1) — Slide 5

Deadlock: smallest example (1)

* two locks A and B

- e.g. A = scanner, B = printer,
processes P, Q both want to create a xerox copy

* locking in differing orders

Process P Process Q Problematic order of
execution:

lock (A); I ock (B);

lock (B); lock (A); P: lock(A)

/* crit. area */ /* crit. area */ Q: lock(B)

P: lock(B) <- blocks

unl ock (A); Q: lock(A) <- blocks

unl ock (B);

unl ock (B);
unl ock (A);

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2007-01-15 7. Deadlocks (1) — Slide 7

Deadlock: right before left (4)

car_3 () {
1 ock(A);
| ock(B);
go();
unl ock(A);
unl ock(B);| ' car_2 () 4
) I | ock(D);
H | ock(A);
| go();
MI unl ock(D)i
- B =5 } unl ock(A);
car_4 () {
I ock(B); i car_1 () {
| o(c;<(0; I I ock(C);
go(); :
unl ock(B); I lOCk-(D)'
unl ock(Q) ; 3cnj|(za’ck(c) ;
} unl ock(D);
}

Hans-Georg EBer, FH Miinchen

Operating Systems I, WS 2006/07 — 2007-01-15

Problematic order of
execution:

carl:
car2:
car3:
car4:
carl:
car2:
car3:
car4:

lock(C)
lock(D)
lock(A)
lock(B)
lock(D) <- blocks
lock(A) <- blocks
lock(B) <- blocks
lock(C) <- blocks

7. Deadlocks (1) — Slide 6

Deadlock: smallest example (2)

Progress
of Q
A
2
y Ll y
Release
A
Pand Q;
want A
A Release
Required B
GetA o
B rrl .3 - \ and
Required want B
5

Get B > >

] 6 o

Ll

> Progress
GetA Get B Release A Release B of P
_A/—Y\J
Picture: Stallings Required g_/-Y\J
B Required

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 —2007-01-15 7. Deadlocks (1) — Slide 8

Deadlock: smallest example (3)

* one possible solution:
P does not need both locks simultaneously

Process P

lock (A);
/* crit. area */
unl ock (A);

lock (B);
/* crit. area */
unl ock (B);

Process Q

I ock (B);
lock (A);
/* crit. area */

unl ock (B);
unl ock (A);

* now deadlock is impossible

Hans-Georg EBer, FH Miinchen

Operating Systems I, WS 2006/07 —

2007-01-15

7. Deadlocks (1) — Slide 9

Deadlock: Grid Lock

[|
il [
N l
LI M —
— e —m O = Rl
[|
i 17y
.l 1
il Iy
o r
P Al
— — — s e o e— - — .— — —
| =0 =8 =k =R = m
[p—— |.
| |
| 11
[|

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2007-01-15 7. Deadlocks (1) — Slide 11

Deadlock: smallest example (4)

Progress
of Q
A
A L A2 A3
Release H
A : 4
| sealeeaaaa S
A y g
X Release P and Q !
Required B wantAZl |
1
HE
[Pand Q
GetA H E want B
B) | beeeedamaaaal 2l
Required :
|mmmhe-- 5
GetB : >
:
; 6 >
o Progress
7 ofP

Picture: Stallings

Hans-Georg EBer, FH Miinchen

GetA ReleaseA GetB Release B

L/Y\l

A Required

Operating Systems I, WS 2006/07 —

)

B Required
2007-01-15

7

. Deadlocks (1) — Slide 10

Five Philosophers Problem

Philosopher 1 needs forks A, B
Philosopher 2 needs forks B, C
Philosopher 3 needs forks C, D
Philosopher 4 needs forks D, E
Philosopher 5 needs forks E, A

Problematic order of execution:
pl: lock (B)

p2: lock (C)

p3: lock (D)

p4: lock (E)

p5: lock (A)

pl: lock (A) <- blocks
p2: lock (B) <- blocks
p3: lock (C) <- blocks
p4: lock (D) <- blocks
p5: lock (E) <- blocks

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 —2007-01-15 7. Deadlocks (1) — Slide 12

Contents of this chapter

resource types
sufficient and necessary deadlock conditions

deadlock detection and removal

deadlock avoidance: banker algorithm

deadlock prevention

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 - 2007-01-15 7. Deadlocks (1) — Slide 13

Resource Types (2)

* non-preemptible resources

- operating system cannot preempt such a resource
(without causing a program failure) — process must
release it freely

- examples:
- DVD writer (preemption = destroyed DVD)
- tape streamer (preemption = useless data on
tape or cancellation of backup due to timeout)

* only the non-preemptible ones are of interest,
because only they can cause deadlocks

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2007-01-15 7. Deadlocks (1) — Slide 15

Resource Types (1)

two categories of resources:
preemptible / non-preemptible

» preemptible resources

- operating system can preempt such a resource and
assign it to another process

- examples:
CPU (scheduler),
main memory (memory management system)

- these resources will not lead to deadlocks

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 —2007-01-15 7. Deadlocks (1) — Slide 14

Resource Types (3)

* reusable vs. consumable resources

- reusable: resource is accessed exclusively, but
after releasing it, it can be reused by a different
process (disk, RAM, CPU, ...)

- consumable: created by one process and
consumed by another process (messages,
interrupts, signals, ...)

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 —2007-01-15 7. Deadlocks (1) — Slide 16

Deadlock Conditions (1)

1. mutual exclusion

* resource is exclusive: at any given moment, only
one process can access the resource

2. hold and wait
* a process already holds one or several resources,
 and it can request further resources

3. non-preemptiveness of resources

* the resource cannot be preempted (taken away
from the process) by the operating system

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 - 2007-01-15 7. Deadlocks (1) — Slide 17

Deadlock Conditions (3)

4. cyclic wait

» processes can be ordered in a circle, where each
process waits for a resource that is currently
blocked by the next process in the circle

holds
waits for B

holds B, holds D
) Process 4 Process 2 . ’
waits for C waits for A
holds
waits for D
Process 3
Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2007-01-15 7. Deadlocks (1) — Slide 19

Deadlock Conditions (2)

* (1) - (3) are necessary conditions for a
deadlock

* (1) - (3) are also desirable properties of an
operating system, because:

- mutual exclusion is needed for proper
synchronization

- hold & wait is needed when a process simultane-
ously needs more than one resource exclusively

- for some resources preemption makes no sense
(e.g. DVD writer, streamer)

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 —2007-01-15 7. Deadlocks (1) — Slide 18

Deadlock Conditions (4)

* (1) - (4) are necessary and sufficient
conditions for a deadlock

» cyclic wait (4) (and its irresolvability) are
consequences of (1) - (3)

* (4) is the most promising point of attack in order
to avoid deadlocks

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 —2007-01-15 7. Deadlocks (1) — Slide 20

Resource Allocation Graph (1)

 show allocations and (not yet granted) requests
graphically:

resource R —>® R is allocated to P
@ process R 4—@ P has requested R

* P, Q from the

minimal example: : C
* deadlock % l
| B

= circle in graph

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 - 2007-01-15 7. Deadlocks (1) — Slide 21

Resource Allocation Graph (3)

* variant for resources which occur multiple times

r[® resource @ rocess
hd (with two instances) P

:_’»® (one) R was allocated to P
V\~.
P B <—® P has requested (some) R

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2007-01-15 7. Deadlocks (1) — Slide 23

Resource Allocation Graph (2)

Philosophers Example Situation after all philosophers
have taken their right forks

Fop
28

B

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 —2007-01-15 7. Deadlocks (1) — Slide 22

Resource Allocation Graph (4)

« examples with several resource instances

el
R R / g

\ /
\ R, %
e g
L] <
i o E
R, . — P,
R, .
)) circle, but no deadlock - the
with the red edge (P;—R,) there is circle condition is only
a deadlock (without it there isn't) necessary, not sufficient!

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 —2007-01-15 7. Deadlocks (1) — Slide 24

Deadlock Detection (1)

* idea: allow deadlocks to occur

* regularly check whether the system has run into
a deadlock state - then remove any deadlock
found

* uses three data structures:

- allocation matrix
- available vector
- request matrix

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 - 2007-01-15 7. Deadlocks (1) — Slide 25

Deadlock Detection (3)

example & g
Q. i Q. =
S5, € <E -B
[(7] (] ()
z5E2 z5E2
NYm S NYam S
“ng3aeo waKRa
E=(1324) A=(0012)
resource vector available vector
0100 1002 Process 1
C=|/1002 R=|0101 Process 2
0210 0012 Process 3
allocation matrix request matrix
Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2007-01-15 7. Deadlocks (1) — Slide 27

Deadlock Detection (2)

e nprocesses P, ..., P,

« mresource classesR,, ..., R,,
of type R, there are E; resource instances (i=1,...,m)
-> resource vector E=(E; E, ... E,)

* available vector A (how many are free?)

« allocation matrix C
C,; = number of resources of type j, which are allocated

to process i

* request matrix R
R; = number of resources of type j, which process i
needs (additionally to what it already has)

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 —2007-01-15 7. Deadlocks (1) — Slide 26

Deadlock Detection (4)

Algorithm
1. find an unmarked process P;, whose remaining
request can be fully granted, i.e. R; < A, for all j

2. if there is no such process, terminate the algorithm

3. such a process could terminate successfully.
Simulate that this process returns all its resources:

A = A+(, (i-te Zeile von Q)
mark the process - it is not part of a deadlock
4. continue with step 1

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 —2007-01-15 7. Deadlocks (1) — Slide 28

Deadlock Detection (5)

« all process that this algorithm leaves unmarked, are part of

a deadlock
» example
E=(1324) A=(0012)| |E=(1324) A=(1224)
0100 1002 (0100) 1002
C=[1002 R={0101 C =|—-0-02 R=1-010%
0210 0012 0216 0-0-1-2
f
/ }
E=(1324) A=(0222)! |E=(1324) A=(1324)
0100 1002 8255 1552
C=[1002 R=[[0101 C =|-+-6-0-2 R=16-10-1

Hans-Georg EBer, FH Miinchen

Operating Systems

1, WS 2006/07 — 2007-01-15

7. Deadlocks (1) — Slide 29

Deadlock Detection (7): Recovery

when to do when a deadlock was detected?

» preemption of a resource?
in the cases which we look at, this is impossible
(non-preemptible resources)

 abortion of a process that is part of the
deadlock

* resetting a process to an earlier process state
in which it did not hold the resource

- requires regularly saving the process states

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2007-01-15 7. Deadlocks (1) — Slide 31

Deadlock Detection (6)

« example: five philosophers

ABCDE

ABCDE

E=(11111) A=(00000)

10000 00001
01000 10000
C={ 00100 |R={ 01000
00010 00100
00001 00010

* algorithm terminates at once
« all processes are part of a
deadlock

Operating Systems I, WS 2006/07 — 2007-01-15

Hans-Georg EBer, FH Miinchen 7. Deadlocks (1) — Slide 30

