emory Management

Allocation of free memory
* Worst Fit Method

- Largest free memory area is allocated.
- Rather large free areas remain.

* Quick Fit Method

- Keeping several lists of free memory areas for specific
standard sizes (e.g. 4 KB, 8 KB, 12 KB etc.) leads to
quick allocation.

- After freeing an area it must be joined with its free
neighbors (if there are any). This is more work when
there are several lists.

- Special variant: Buddy System

Hans-Georg Efer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 3

Allocation of free memory

A specific amount of requested memory can be
allocated as follows:
* First Fit Method

- First sufficiently large free memory area is
allocated.

* Best Fit Method
- Smallest sufficiently large free memory area is

allocated.
— More complex, since whole list or bitmap must be
searched.
- Strong fragmentation of free memory into many
small areas.
Hans-Georg EBer, FH Miinchen Betriebssysteme I, WS 2006/07 Memory Management (2) — slide 2

Allocation of free memory: Example

M 8M
Example for memory b 1M
usage .
6M
* Before and 1 Best i
ast 18M
° a.fter ﬁiln"fk"ﬁ‘l.\. ™
allocation of a 16 ™ .
Mbyte block o o
D Allocated block
14M (] Freblock M
Worst Fit &
Next Fit
36M
20M

(a) Before (b) After

Hans-Georg EBer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 4

Memory Management: Buddy System
» Separate lists of free areas with sizes 1, 2, 4, 8, 16 etc.
KByte (up to memory size).

* When freeing a memory area, only search one list to find
out whether area can be joined with another free area.

* Block size always a power of 2 — not very efficient memory

usage.
0 128 K 256K 384 K 512K 640K 768K 896K M
L Ly L N L L B Y L L B B LB B
Initial state 1024
Request 70 A 128 256 512
Request 35 A B |64 256 512
Request 80 A B |64 (¢} 128 512
Release A 128 | B |64 C 128 512
Request 60 128 | B |D C 128 512
Release B 128 | 64 |D C 128 512
Release D 256 C 128 512
Release C 1024
Hans-Georg Efer, FH Miinchen Betriebssysteme 11, WS 2006/07 Memory Management (2) — slide 5

Segmentation (1)

* Partition Programs into several segments, e.g.
code segment, data segment(s), stack
segment(s) etc.

* Each Segment corresponds to a lineare
address space from 0 to a maximum value.

* Addresses are composed of:

- a segment address
- a relative address within the segment
(two-dimensional address space)

Hans-Georg Efer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 7

Buddy System: Tree Representation

Situation before release of process D

1024

256
128
64
A
‘128‘64‘D‘ c ‘128‘ 512
Hans-Georg Efer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 6

Segmentation (2)

* Advantages of segmentation:

- Easier to find free space for the smaller
segments.

- Segments can grow independently.

- Not all segments have to be inside the main
memory (Swapping segments).

- Segments can have separate levels of
protection (read, write, ...).

- Differentiate between process-private

segments and segments that are shared
between several processes.

Hans-Georg EBer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 8

Segmentation (3)

* Hardware must allow for segmentation.

* For each process there is a segment table in
the main memory, holding at least three
values for each segment:

- Is the segment loaded in main memory?
- Segment's start address in main memory
- Length of segment

Hans-Georg Efer, FH Miinchen Betriebssysteme 11, WS 2006/07 Memory Management (2) — slide 9

Segmentation (5)
* Add
tran ;|east70 n.

CPU

segment table

limit | [base a

physical memory

P

trap; addressing error

* Each memory access requires an additional memory
access (segment table). Special hardware registers
must speed-up this process.

Hans-Georg Efer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 11

Segmentation (4)

» Address of the segment table saved in the
segment table register.

Segment \ Segment table ;
table register Main memory
11 a, I,
2 0 l,
3 1 a, I,
T R

Hans-Georg Efer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 10

Segmentation (6)

* Accessing a segment that is not inside the
main memory causes a Segment Fault:
Operating system must fetch segment into
memory.

* Protection of a segment:
Entries in segment table contain additional
protection code (e.g. for read, write, execute
accessses).
Code generated by programmer (or compiler/
linker).

Hans-Georg EBer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 12

Segmentation (7)

 Sharing of a segment in main memory is
simple:
Let entries in segment tables of several
processes point to the same main memory
address.

* Fragmentation:
Since every segment is contiguous
inside the main memory, there is
external fragmentation.

Starting position

* Not enough memory for large programs
-> Overlay programming

* Load parts of the program dynamically (from
disk) when they are needed

* Programmer must care about creation of
overlays

Hans-Georg Efer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 15

Hans-Georg Efer, FH Miinchen Betriebssysteme 11, WS 2006/07 Memory Management (2) — slide 13
-
Non-contiguous
-
(virtual)

memory partitioning

Overlay Programming

Turbo Pascal, about 1985-90:
program bigproject; data
overl ay procedure customerdata;
projekt.001 Space
overl ay procedure storagedata; . for
overlay
procedures
{ marn pr ogram } projekt 002
begin _
while input <> "exit" do begin
case input of Program
"customer": customerdata,; _
"storage": storagedate; projektcom
end;
end; oS
end.

Hans-Georg EBer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 16

Solution of the problem

* Virtual memory that is big enough for the
whole program

* Program sees memory area that was
allocated for it — how much "real" memory the
system has, does not matter (for the program)

Hans-Georg Efer, FH Miinchen Betriebssysteme 11, WS 2006/07 Memory Management (2) — slide 17

Virtual Memory Management
(Paging)

* Calculation of physical memory address from
the virtual address given by the program
- happens at the program's runtime,
- is transparent for the program,
- must be hardware-assisted.

* Advantages of virtual memory management:
— Allocation of main memory is simple.

- No external fragmentation, small internal
fragmentation.

- Nothing to do for the programmer.

Hans-Georg Efer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 19

Virtual Memory Management
(Paging)

* Partition the address space into pages of
fixed size and the main memory into page
frames of equal size.

- Typical page sizes: 512 Byte — 8192 Byte
(always a power of 2).

* The linear contiguous address space of a
process ("virtual" address space) is mapped
onto non-contiguous page-frames.

* Operating system manages one single list of
free page frames.

Hans-Georg Efer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 18

Virtual Address Space (1)

* With Paging, the relationship between
program addresses and physical (main
memory) addresses is only established at
runtime by using the page tables.

Frame number

1]
4]
3] 2
virtual page i~ Pl
adress space table 5 -
:

Main Memory

Hans-Georg EBer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 20

Virtual Address Space (2)

* The addresses used by the program are
therefore called virtual addresses.

* The virtual address space of a program is the
linear, contiguous address space that can be
used by the program.

Hans-Georg Efer, FH Miinchen Betriebssysteme 11, WS 2006/07 Memory Management (2) — slide 21

Address translation with Paging (2)

* For each process there is a page table. It
contains, for each process page:
- the information whether the page is in main
memory,
- the number of the page frame in main memory,
which holds the page.

* A special Register contains the start address of
the page table for den current (running) process.

* Page number is used as index into the page
table.

Hans-Georg Efer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 23

Address translation with Paging (1)

* Program address is split into two parts:
- a page number
- a relative address (offset) into the page

Example: 32 bit address, page size of
4096 (=2712) bytes:

31 12 11 0

Page number offset

Hans-Georg Efer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 22

Address translation with Paging (3)

virtual physical Main memory
address address
o] J f
d page

J “n frame
{
f

Page table

* Each memory access requires an additional
memory access (page table). Special caches
(hardware) must speed-up this process!

* Page not in main memory -> special exception,
so called page fault.

Hans-Georg EBer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 24

Virtual memory in general (1)

» Several processes can be kept in memory
effectively
--> better system utilization

A process can request much more memory
than physically available

Hans-Georg Efer, FH Miinchen Betriebssysteme 11, WS 2006/07 Memory Management (2) — slide 25

Virtual memory in general (3)

* ,thrashing” (see later): Processor spends most
of its time swapping process parts in and out
instead of running process code

* Locality principle:
- Data and program code accesses often locally
grouped;
--> it is ok to assume, that only few process
parts must be kept in memory simultaneously
during a short period of time

Hans-Georg Efer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 27

Virtual memory in general (2)

* General procedure:
— Only parts of the process reside in the physical
(main) memory

— When accessing an address that is not in
memory:
* OS sets process state to blocked
* OS executes Disk-I/O read command

* After loading the missing part (page or
segment) an I/O interrupt occurs

* OS sets process state back to ready

Hans-Georg Efer, FH Miinchen Betriebssysteme II, WS 2006/07 Memory Management (2) — slide 26

