Memory Management (3)

virtual physical Main memory

address address
cru |] f
]r d page frame

[f]d]
without J {
TLB -

page table
logical
i address

with CPU p page frame
TLB number number

TLB hit

p f
physical
TLB Lf]d}— memory
_ physical
TLB miss P address
[p—

page table

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 3

Translation Look-Aside Buffer (1)

* Translation Lookaside Buffer (TLB): fast hardware cache,
holds the most recently used page table entries

* Associative memory: when translating an address the
page number is compared with all TLB entries in parallel.

logical
addr

cPu [[P d] page frame

number number

5 7 TLB hit

physical
TLB | f | d. memory

_ physical

TLB miss P address

f
ggf. page fault page table
Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 2

Translation Look-Aside Buffer (2)

e TLB hit
-> accessing the page table is not necessary
* TLB miss
-> access the page table
replace an old TLB entry with the new info

* hit ratio influences average time needed for an
address translation.

* Lokality principle: Programs typically access
neighboring addresses
-> even with small TLBs high hit ratios
(typically: 80-98%).

Hans-Georg Eer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 4

e, OCAlity principle

=

8

[43
23

- JWI} UONOdXY

i
FIWNHI%
ljlm ’|III||!! .

=
55
FE
£
EE

A Picture: Hatfield (1972)

Hans-Georg EBer, FH Miinchen Memory Management (3) — Slide 5

Operating Systems II, WS 2006/07

Translation Look-Aside Buffer (4)
— with memory cache

TLB Operation

Virtual Address

TLB
hit Cache Operation

; Real Address
¥ Tag| i

Hit | Value

il

\/\ Main
Memory
Page Table
Value
Picture: Stallings, S. 346 \/\

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 7

Translation Look-Aside Buffer (3)

* Contents of TLB are process-specific!
Two possibilities:

- Each TLB entry has a ,valid bit".

At context switch the whole contents of the TLB
are invalidated.

- Each TLB entry contains process identification
(PID) that is compared with the PID of the
accessing process.

* Examples for TLB sizes:
- Intel 80486: 32 entries

- Pentium-4, PowerPC-604: 128 entries each for
code and data

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07

Memory Management (3) — Slide 6

Translation Look-Aside Buffer (5)

What are the operating system's tasks?
* load page table register

* In case of page fault: retrieve missing page from the
swap and refresh page table

* possibly before that: page replacement — what page
should be removed from main memory? (-> later)

Everything else: hardware
* TLB access and possibly page table access

* When page is in memory: calculation of the phys.
address

* read contents from cache or perhaps main memory

Hans-Georg Eer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 8

Software-TLB

* Alternative to CPU/MMU handling the TLB

* If a page isn't found in the TLB, the MMU
generates a TLB fault

* operating system runs an error handler for the
TLB fault:
- search for page
- pick a TLB entry that can be replaced
- overwrite TLB entry with the new page/page

frame translation

- continue execution (wWhere the TLB miss
occurred)

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 9

Inverted page tables (2)

* Problem: Given process p and its page n find
the entry (p,n) in the inverted table -> lots of
lookups

* Use TLB here as well, in order to find ,most
used” pages quickly

* In case of TLB miss there is no way out: search

* Different solution for problem of huge page
tables: Multi-layer paging

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 11

Inverted page tables (1)

* When there is huge virtual memory, a lot of
page table entries are needed,
e.g. 232 Byte address space, 4 KByte/page
-> >1 million page entries,
so: page table size is > 4 MByte (per process!)
» Save space using inverted page tables:

- normal: one entry per (virtual) page with reference
to page frame (in main memory)

- inverted: one entry per page frame with reference to
tupel (process ID, virtual page)

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 10

Inverted page tables (3)

Page table Inverted
0 N page table
1

2

3 S

4 S

5 S

6 S 0 0 2
7 S 1 1 -
8 N 2 2 1
9 3 3 3
10 S 4 4 -
11 S 3 5 5 0
12 S 6 6 -
13 S 7 7 B
14 S B 8 -
15 S
N Page frames im
18 S main memory
19 S
20 S
21 S
22 S
23 S

Hans-Georg Eer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 12

Effects of page size

* Internal fragmentation: the smaller the pages, the less
fragmentation

* Small pages -> big tables
possible swapping of parts of the table
-> double Page Faults when
accessing a page, whose table
entry is swapped out

Picture: Stallings, p. 347
A

* Locality principle:
small pages: local, few faults.
bigger pages, poor use of locality
no more faults as page size
approaches size P of process

Page Fault Rate

memory r

(a) Page Size
Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 13

Multi-Layer Paging (2)

* Double-layer Paging:
- partition page number further, e.g.:

31

22 21

12 11

[b

p2 | offset

page number
- p,- Index into outer page table, each of whose entries
points to an inner page table zeigen
- p,: Index into one of the inner page tables, whose
entries point to page frames in main memory
- The inner page tables need not be memory-resident.

 Similar: implement three-layer paging etc.

Hans-Georg EBer, FH Miinchen

Operating Systems II, WS 2006/07

Memory Management (3) — Slide 15

Multi-Layer Paging (1)
Page table can become quite large.

Example: - 32 bit addresses,
- 4 KByte page size,
- 4 Byte per entry

Page table:
>1 million entries,
4 MByte table size
(per process!)

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 14

Address translation in
Multi-Layer Paging (1)

Double-layer Paging:

[p e] d]

virtual address

Hans-Georg Eer, FH Miinchen

]

P

1

outer -
page table inner

page table requested

Operating Systems II, WS 2006/07

page

Memory Management (3) — Slide 16

Address translation in
Multi-Layer Paging (2)
Three-layer Paging with SPARC CPUs:

Virtual Address |Irdex1 | Index 2 I Index 3 | Offset
31 23 17 1 0

Context Context Table
Table —
Register

Context root ptr
Register

L1 Table

L2 Table

—*|_PTP L3 Table
—__PTP

— PTE

Picture: Dr. Joel Emer,
MIT Open Courseware
31 11 0

Physical Address PPN [offset |

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 17

Multi-Layer Paging (5)

* For each address translation even further
memory accesses are needed, thus using
TLBs is even more important.

* The key for the TLB is the combination of all
parts of the page number: (p ,p,,...).

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 19

Multi-Layer Paging (4)
* Size of page tables:
Example: o | e | oftset |

10 10 12

- Outer page table has 1024 entries, pointing to
(potentially) 1024 inner page tables, each of which
holds 1024 entries.

- With a length of 4 Byte per page table entry each
page table has the size of a 4 KByte page.

- System uses only as many inner tables as is
necessary.

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 18

Memory Protection with Paging (1)

* Protection against access by other processes:
- Since every process has its own page table,
accessing memory areas of other processes is
impossible. (On the other hand, this makes
implementation of shared memory harder.)

* Protection against (e.g.) illegal write access:

- Page table entries contain an additional protection
code, which declares whether a page can be read /
written etc. (This may also depend on whether
access is attempted from user or kernel mode.)

Hans-Georg Eer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 20

Memory Protection with Paging (2)

* Page allocation is transparent for the
programmer !

 Creation of protection codes by compiler and /
or linker:

- Program is partitioned into sections whose sizes
are multiples of the page size.

- For every section a protection code (for all pages
of this section) is generated and written to the
head of the program (binary) file.

- Program loader sets the protection codes in the
page table entries.

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 21

Page Sharing with Paging (2)

* In practice the parts of memory that shall be
shared between several processes are

- either implemented as a shared segment with its
own page table (combination of segmentation and
paging, e.g. Unix) or

- there is a pseudo process address space for
which the operating system keeps a separate
(global) page table (e.g. Windows).

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 23

Page Sharing with Paging (1)

* In theory entries of different page tables could
point to the same page frame.

Problems:

- How to find out, whether a page is already used
by a different process and in which page frame it
is located?

- When changes happen (e.g. of the assigned page
frame) many page tables would need to be
updated.

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (3) — Slide 22

