Memory Management (5)

Second Chance Algorithm (2)

e Simpler implementation: ,clock hand”

- Put pages into a circular list, move the hand
instead of repositioning a list element.

o Yo Check the page that the clock
O OR=? hand points to:
O /) O * if R=0, replace the page and
0 0 move the hand.
O O « if R=1, clear R, move the hand
Opgd and check the next page.
Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 3

Second Chance Algorithm (1)

* Modified FIFO algorithm:
When replacing a page: if the reference bit of
the oldest page is set, then

- clear the reference bit and put the page back to
the end of the queue,

- continue with the same check for the next oldest
page.
* So the algorithm
- replaces the oldest page with a cleared reference
bit,
- Gives a page that has recently been used a
"second chance".

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 2

Page Replacement, Examples

Page address

stream 2 3 2 1 5 2 4 5 3 2 5 2
2] 2] [27 2] 27 [27 4] 4 4] 2] (20 (2]
oPT 3 3 B 3 B 3 3 B 3 3 B
1 3 & 3 3 3 3 5 5
r F F
2 2 2 2 2 2 2 2 3] 3 3 3
LRU 2] 3 3 5 & 3 3 3 5
NN I o N Y o Uy O o B T B 2 2 2
I F r I
2 2 2 2 5 5 5] 5 3 3 3 a3
FIFO 3 3 3 3 2 2 2 2 2 g 5
AN N o U O o I U o O 4] [L4] [4] [4] [2]
F F F F F F
2% 2 2% | 2% 5% 3 3 3% - 37
CLOCK —f | [35] [3%] [3% a3 (2 »2F| 2] [27]
L b | [1F] [L4] [4] [58] [5%]
r F F
Hans-Georg Eer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 4

Thrashing (1)

* Thrashing means that a process causes excessively
many Page Faults (every few thousand instructions).

* Thrashing occurs, when a process actively uses (i.e.
Accesses) more pages than page frames were
allocated for it.

Thrashing of several processes leads to low CPU

utilization:

CPU utilization

Degree of multiprogramming

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 5

Further Design Issues (1)

» Asynchronous Paging of modified pages:

- Modified, replaced pages are paged with delay:
E.g. wait until the disk containing the swap area is
idle or when the stock of free page frames
becomes small.

- Write modifizied, non-replaced pages to disk in
advance and clear their modify bit.

* Stock of free page frames:

- Through early page replacement make sure that
in case of a page request a free page frame will
be available.

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 7

Thrashing (2)

Solutions

- If there is free memory available: Give the
process further page frames (e.g. by
dynamically adjusting the working set or
with a global replacement strategy).

- If no free memory remains:

Swapping of processes.

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 6

Further Design Issues (2)

* Page Buffering (Keeping the contents of a
replaced page):

- A replaced page first keeps its content, but is
added to the list of free page frames or becomes
reserved for swap-out.

- If the process accesses the page again briefly
after this, it is still in memory and can be
reassigned to the process without disk access
(soft page fault).

- It must be known, whether the page frame has
been reused meanwhile, i.e. has been assigned to
a different process.

Hans-Georg Eer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 8

Further Design Issues (3)

* Prepaging:
- A certain number of pages is brought into memory
in advanced (e.g. when starting a new process) -
even before the process tries to access it.

* Clustering:

- When a Page Fault occurs, a cluster of several
pages (instead of just the requested one) are
brought into memory (special prepaging).

- Modifed pages are not written to disk alone, but in
clusters of several pages.

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 9

Linux
Memory Management

Further Design Issues (4)

* Locking pages in memory:
- Some pages of a process are excempt from

paging.
- Implementation via a (privileged) System Call.
- When swapping out the whole process, these

pages are swapped as well.

* Design of the programs influences the number
of page faults and thus the runtime of the
program as well as the overall system
performance!

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 10

Linux view on Memory (1)

* Memory management on several layers:
1. Nodes, pg_data_t , Processor + its memory

2. Zones:
ZONE_DMAZONE_NORMAEZONE_HIGHMEM

3. Each zone has its own table (zone_mem_map,
listing all memory pages of this zone

4. pages: struct page

Hans-Georg Eer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 12

Linux view on Memory (2)

pg_data t
| node_zones
Y i Y
ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM
¥
Zone_mem_map Zone_mem_map Zone_mem_map |
L] L
, .] b
| struct page ‘ | struct page | | struct page | | struct page I struct page { struct page]

Picture: Linux-Magazin 09/2003

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 13

Linux view on Memory (4)

* Managing the free memory
Linux uses the Buddy System; largest block
size: 2° (= 512 pages = 2 MByte)
* Returning memory
- Kernel 2.4:
immediate merging of the buddies

- Kernel 2.6:
delayed - wait, whether one of the small blocks
will be requested in the near future

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 15

Linux view on Memory (3)

* Resolution of virtual addresses in three steps:
- PGD: page global directory (Array of type pgd_t)
- PMD: page middle directory (Array of type pmd_t)

- PTE: page table entry (Array of type pte_t)

A

PGD (Global) | PMD (Middle) PTE (Page) offset | =
! | PAGE_MASK | " PAGE_SIZE <
I(. —_ T >‘4 g
5 PMD_MASK o PMD_SIZE g
| PGD.MASK | PGD_SIZE s

e il !
F i 3 -

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 14

Linux view on Memory (5)

* Process address space: mm_struct (in
linux/sched.h)

* Each process has exactly one such structure
(several threads of one process share the same)

* Address space divided into contiguous, non-
overlapping regions (vm_area_struct)

 Start/End of regions aligned to page borders

* Information about regions is multiply saved:
as list and as so-called Red Black Tree

Hans-Georg Eer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 16

Linux view on Memory (6)

Red Black Tree:
binary search tree
with following rules:
- Nodes are red or black
- Root is black /
- All leaves are black] ° nic]
- Both children of each red bau
node are black oo
- For each node holds:
All paths to leaves contain
the same number of black nodes.

-> mostly balanced tree; allows efficient search for
addresses

Bild: Wikipedia, http://en.wikipedia.org/wiki/Red-black_tree

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 17

Linux view on Memory (8)

struct mm struct {

(-]
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;

(-]

u”risigned long rss, [..]

 start_code/end_code : start and end of the code section
* start_data/end_data . start and end of the data section
e start_brk/brk . start/end of the heap

e start_stack : start of the stack

* rss : number of process pages which are currently in memory

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 19

Linux view on Memory (7)

struct mm.struct {
struct vm area_struct * nmap; /* list of VMAs */
struct rb_root mmrb;
struct vm area_struct * nmap_cache; /* last find_vma result */
pgd_t * pgd;

e mmap linked list of regions (mmapis the list head)
e mm_rh: root of the Red Black Tree

e mmap_cache: Search is expensive, even with
red black tree; here the last search result is cached

* pgd: Page Global Directory for this process

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 18

Linux view on Memory (9)

Memory regions:
vm_area_struct (in linux/mm.h)

struct vm_area_struct {
struct mm_struct * vm_mm;
unsigned long vm_start;
unsigned long vm_end;

/* linked list of VM areas per task, sorted by address */
struct vm_area_struct *vm_next;

pgprot_t vm_page_prot;
unsigned long vm_flags;

rb_node_t vm_rb;

(-]

Hans-Georg Eer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 20

Linux view on Memory (10)

struct vm_area_struct {
[-]
struct vm_area_struct *vm_next_share;
struct vm_area_struct **vm_pprev_share;

/* Function pointers to deal with this struct. */
struct vm_operations_struct * vm_ops;

/* Information about our backing store: */
unsigned long vm_pgoff;

struct file * vm_file;

unsigned long vm_raend,;

void * vm_private_data;

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 21

Linux view on Memory (12)

System Calls which modify the address space

e The exec system call causes

- Undoing the mappings of the old regions (unmapping),

- Allocation and loading of new regions,

- Mapping the new regions into the process address space.
e The exit system call causes

- Undoing all region mappings.

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 23

Linux view on Memory (11)

System Calls which modify the address space

* Changing the size of a data region with
- brk (endds) endds : highes virtual address of the data region
(so called break value).
- oldendds = sbrk (increment)
increase the break value by increment bytes.
e The fork system call causes
- Duplicating the process-private regions of the parent process,

- Mapping the new process-private and the shared regions into the
address space of the child process.

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 22

Practice: Memory Mapped Files

Memory Mapped Files Memory Mapped Files in C (2)

MAP_FIXED Do not select a different address than the one specified. If the mem-
ory region specified by start and len overlaps pages of any existing

o . 1 1 mapping(s), then the overlapped part of the existing mapping(s) will
Idea map Conte nts Of a flle Into memory be discarded. If the specified address cannot be used, mmap() will
fail. If MAP_FIXED is specified, start must be a multiple of the
pagesize. Use of this option is discouraged.

° . . /
then access the flle through Vanables memory MAP_SHARED Share this mapping with all other processes that map this object.
Storing to the region is equivalent to writing to the file. The file
addresses, may not actually be updated until msync(2) or munmap(2) are called.

e.g. mapping an ASCII file to MAP_PRIVATE

Create a private copy-on-write mapping. Stores to the region do not
affect the original file. It is unspecified whether changes made to

- a str]ng Vanable (Python) the file after the mmap() call are visible in the mapped region.
_ a char* Varlable (C) . You must specify exactly one of MAP_SHARED and MAP_PRIVATE.
. . . . fd should be a _valid file descriptor, unless MAP_ANONYMOUS is set, in which case
* read and manipulate file by modifying content fhe argument is ignore.
offset should be a multiple of the page size as returned by get pagesi ze(2).
of memory addresses

Memory mapped by mmap() is preserved across fork(2), with the same attributes.

[]
b Standard POSIX fu nCtlon mmap() RETLRN \éﬁLLsJEccess, mmap() returns a pointer to the mapped area. On error, the value

MAP_FAI LED (that is, (void *) -1) is returned, and errno is set appropriately.
On success, nunmap() returns 0, on failure -1, and errno is set (probably to EIN-
VAL).

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 25 Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 27

Memory Mapped Files in C (1) Memory Mapped Files in C (3)

NAMVE #include <stdio.h>
mmap, munmap - map or unmap files or devices into memory #include <sys/types.h>
#incl ude <sys/mman. h> .
SYNCPSI S #include <asm/fentl.h> $Is -1 testfile. txt
#i ncl ude <sys/nmman. h> #include <sys/stat.h> [.] 66 [.] testfile.txt
\Slggj. * mmap(void *start, size_t length, int prot , int flags, int fd, off t off- int main(void) { $ cat testfile.txt
' char filename[]="testfile.txt"; Das ist eine kleine Testdatei.
int munmap(void *start, size_t length); struct stat buffer; Sie enthaelt nur zwei Zeilen Text.
stat(filename, &buffer);
DESCRI PTI ON int len=buffer.st_size; $ gcc -o nmap-exanpl e \
The mmap() function asks to map length bytes starting at offset offset from the mmap- exanpl e. c
file (or other object) specified by the file descriptor fd into memory, prefer- printf("Length of file: %1d \n",len);
ably at address start. This latter address is a hint only, and is usually speci- int fd: $./ mmap- exanpl e
fied as 0. The actual place where the object is mapped is returned by map(), if ((fdv = open(filename, O_RDWR)) == -1) Length of file: 66

and is never 0.

return ((int) (caddr_t) -1); Das ist eine kleine Testdatei.
The prot argument describes the desired memory protection (and must not conflict N . Sie enthaelt nur zwei Zeilen Text.
with the open mode of the file). It is either PROT_NONE or is the bitwise OR of char *result = (char *) mmap(0, len, .
one or more of the other PROT_* flags. PROT_READ|PROT_WRITE, MAP_SHARED, fd, §; $ cat testfile.txt
PROT_EXEC Pages may be executed. A Illttle test ---
PROT_READ Pages may be read. /* und jetzt den Anfang uberschreiben */ atei.
PROT_WRI TE Pages may be written. printf ("%s" result); Sie enthaelt nur zwei Zeilen Text.
PROT_NONE Pages may not be accessed. strepy(result,” A little test --- \n");
The flags parameter specifies the type of the mapped object, mapping options and (void) close(fd);

whether modifications made to the mapped copy of the page are private to the pro-
cess or are to be shared with other references. It has bits

[-] }

return O;

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 26 Hans-Georg Eer, FH Miinchen Operating Systems II, WS 2006/07 Memory Management (5) — Slide 28

Memory Mapped Files in Python

#!/usr/bin/python

mmap- bei spi el . py
import mmap, os
filename = "testfile.txt"
f = file(flename, "r+")
size = os.path.getsize(filename)
data map. mmap(f.fileno(), size

print data

$ pyt hon mmap- exanpl e. py

print len(data), size

<mmap.mmap object at 0x403a33a0>
66 66

Access strings via slicing:
print repr(data[:15]), repr(data[:15])

or via file functions (read):

print repr(data.read(15)), \
repr(data.read(15))
Loops are possible, too:
counter=0
for i in data:
counter+=1
print counter,":",i
if counter==10: break

Hans-Georg EBer, FH Miinchen

'‘Das ist eine kI' 'Das ist eine kI'
‘Das ist eine kl' 'eine Testdatei.'

N

POO~NOOUORWNE
1

Operating Systems II, WS 2006/07 Memory Management (5) — Slide 29

