9. File Systems (4)

* 9.5 Practice: Windows
* 9.6 Theory

home/esser/Daten/Dozent/Folien/bs2-esser-10-english.odp

Windows File Access (1)

* On a low level Windows provides the same file
access functions as Linux / Unix, and they have
the same syntax

- fd=open (), close (fd)
- read (fd,...), write (fd,...)
 fopen, fread exist on Windows as well

* however, the standard way is to use Windows-
specific file functions

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 3

9.5 Practice:
File Access with Windows

Windows File Access (2)

» Windows standard functions are object-based:

- handle = CreateFile () creates / opens a file
- ReadFile (handle, ...) reads from a file

- WriteFile (handle, ...) writes into a file

- CloseFile (handle) closes a file

- SetFilePointer (handle,...)
change read/write position

- WaitForSingleObject (handle)
wait for termination of a file I/O operation

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 4

Windows File Access (3)

» open / create file: CreateFile

HANDLE Creat eFi | e(
LPCTSTR | pFi | eNane,
DWORD dwDesi r edAccess,
DWORD dwshar eMbde,
LPSECURI TY_ATTRI BUTES | pSecuri tyAttri butes,
DWORD dwCr eat i onDi sposi tion,
DWORD dwFl agsAndAttri but es,
HANDLE hTenpl ateFil e);

example 1: open a file for reading

hFile= CreateFil e("ONE.TXT", 1 open ONE. TXT
GENERIC_READ, I open for reading
0, 1 do not share
NULL, /i no security
OPEN_EXISTING, " existing file only
FILE_ATTRIBUTE_NORMAL, 1 normal file
NULL); I no attr. tenplate

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 5

Windows File Access (5)

* reading: ReadFile

BOOL ReadFil e(
HANDLE hFi | e,
LPVAO D | pBuffer,
DWORD nNunber Of Byt esToRead,
LPDWORD | pNunber O Byt esRead,
LPOVERLAPPED | pOver | apped) ;

 writing: WriteFile

BOOL WiteFile(
HANDLE hFi | e,
LPCVA D | pBuffer,
DWORD nNunmber Of Byt esToWi te,
LPDWORD | pNunber Of Byt esWi tten,
LPOVERLAPPED | pOver | apped) ;

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 7

Windows File Access (4)

example 2: open a file in append mode
hAppend = CreateFi |l e("TWO.TXT", // open TWOD. TXT

GENERIC_WRITE, I open for witing

0, /i do not share

NULL, " no security

OPEN_ALWAYS, 1 open or create

FILE_ATTRIBUTE_NORMAL, I nornmal file

NULL); 1 no attr. tenplate
append data of ONE.TXT to TWO.TXT; with locking
do {

if (ReadFi |l e(hFi | e, buff, 4096, &dwBytesRead, NULL)) {
dwPos = Set Fi | ePoi nt er (hAppend, 0, NULL, FILE_END);
LockFi | e(hAppend, dwPos, 0, dwPos + dwBytesRead, 0);
WiteFil e(hAppend, buff, dwBytesRead,&dwBytesWritten, NULL);
Unl ockFi | e(hAppend, dwPos, 0, dwPos + dwBytesRead, 0);

}
} while (dwBytesRead == 4096);
/I dose both files.
Cl oseHandl e(hFi | e);
Cl oseHandl! e(hAppend);

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 6

Windows File Access (6)

« example: copy a file and convert the data

#include <windows.h>
#include <stdio.h>
#define BUFSIZE 512

int main() {
HANDLEhFi | e, hTenpFile;
DWORD dwRetVal, dwBytesRead, dwBytesWritten, dwBufSize=BUFSIZE;
UINT uRetVal; BOOL fSuccess;
char szTempName[BUFSIZE], buffer[BUFSIZE], IpPathBuffer[BUFSIZE];

/I Open the existing file.

hFil e = CreateFil e("original.txt", /I file name
GENERIC_READ, /I open for reading
0, /I do not share
NULL, /I default security
OPEN_EXISTING, /I existing file only
FILE_ATTRIBUTE_NORMAL, // normal file
NULL); /I no template

if (hFi | e == INVALID_HANDLE_VALUE) {
printf (“CreateFile failed with error %d.\n", GetLastError()); return (1);

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 8

Windows File Access (7)

/I Get the temp path.
dwRetVal = Get TenpPat h(dwBufSize, // length of the buffer
IpPathBuffer); // buffer for path
if (dwRetVal > dwBufSize || (dwRetVal == 0)) {
printf ("GetTempPath failed with error %d.\n", GetLastError()); return (2);
}

/I Create a temporary file.

uRetVal = Get TenpFi | eNanme(IpPathBuffer, // directory for tmp files
"NEW", /I temp file name prefix
0, /I create unique name
szTempName); // buffer for name

if (uRetVal == 0) {

printf ("GetTempFileName failed with error %d.\n", GetLastError()); return (3);
}

/I Create the new file to write the upper-case version to.

hTenpFil e = CreateFil e((LPTSTR) szTempName, // file name
GENERIC_READ | GENERIC_WRITE, // open r-w
0, /I do not share
NULL, /I default security
CREATE_ALWAYS, Il overwrite existing
FILE_ATTRIBUTE_NORMAL,// normal file
NULL); /I no template

if (hTenpFi | e == INVALID_HANDLE_VALUE) {

printf ("CreateFile failed with error %d.\n", GetLastError()); return (4);
}

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 9

Windows File Access (9)

* jump to a specific position within the file

DWORD Set Fi | ePoi nt er (
HANDLE hFil e,
LONG | Di st anceToMove,
PLONG | pDi st anceToMoveHi gh,
DWORD dwibveMet hod
)

hFile: [in] A handle to the file that has a file pointer to be moved.

IDistanceToMove: [in] The low order 32-bits of a signed value that specifies the
number of bytes to move the file pointer.

IpDistanceToMoveHigh: [in, out, optional] A pointer to the high order 32-bits of the
signed 64-bit distance to move. If you do not need the high order 32-bits, this pointer
must be set to NULL.

dwMoveMethod: [in] The starting point for the file pointer move:

FILE_BEGIN The starting point is 0 (zero) or the beginning of the file.
FILE_CURRENT The starting point is the current value of the file pointer.
FILE_END The starting point is the current end-of-file position.

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 11

Windows File Access (8)

/I Read BUFSIZE blocks to the buffer. Change all characters in the buffer to
/I upper case. Write the buffer to the temporary file.
do {
if (ReadFi | e(hFi | e, buffer, BUFSIZE, &dwBytesRead, NULL)) {
CharUpperBuff(buffer, dwBytesRead);
fSuccess= WiteFil e(hTenpFil e, buffer, dwBytesRead,
&dwBytesWritten, NULL);
if (fSuccess) {
printf ("WriteFile failed with error %d.\n", GetLastError()); return (5);

}else {
printf ("ReadFile failed with error %d.\n", GetLastError()); return (6);

}
} while (dwBytesRead == BUFSIZE);
/I Close the handles to the files.
fSuccess = O oseHandl e (hFi | e);
if ('fSuccess) {
printf (“CloseHandle failed with error %d.\n", GetLastError()); return (7);

fSuccess = O oseHandl e (hTenpFi | e);
if ('fSuccess) {
printf ("CloseHandle failed with error %d.\n", GetLastError()); return (8);

/I Move the temporary file to the new text file.
fSuccess = MoveFi | eEx(szTempName, "allcaps.txt’, MOVEFILE_REPLACE_EXISTING);
if (fSuccess) {

printf ("MoveFileEx failed with error %d.\n", GetLastError()); return (9);

return (0);

}
Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 10

Searching for Files (1)

* hFind = FindFirstFile () BANDLE FindFirstrile(
LPCTSTR lpFileName,

LPWIN32_FIND_DATA lpFindFileData
)i
IpFileName: [in] A pointer to a null-terminated string that specifies a

valid directory or path, and file name that can contain wildcard
characters, for example, an asterisk (*) or a question mark (?).

IpFindFileData: [out] A pointer to the WIN32_FIND_DATA structure that
receives information about a found file or subdirectory.

» FindNextFile (hFind) — ™gmmindrexeriie

HANDLE hFindFile,
LPWIN32_FIND_DATA lpFindFileData
)i

* FindClose (thd) hFindFile: [in] Search handle returned by a previous call to the
FindFirstFile or FindFirstFileEx function.

IpFindFileData: [out] Pointer to the WIN32_FIND_DATA structure that
receives information about the found file or subdirectory. The structure
can be used in subsequent calls to FindNextFile to indicate from which
file to continue the search.

http://msdn2.microsoft.com/en-us/library/aa364418.aspx, http://msdn2.microsoft.com/en-us/library/aa364428.aspx

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 12

Searching for Files (2)

#define WIN32 WINNT 0x0501 source: http://msdn2.microsoft.com/
#include <windows.h> en-us/library/aa365200.aspx
#include <stdio.h>

#include <strsafe.h>

#include <malloc.h>

#define BUFSIZE MAX_PATH

int main(int argc, char *argv[]) {
WIN32_FIND_DATA FindFileData;
HANDLE hFind = INVALID_HANDLE_VALUE;
DWORD dweError; LPSTR DirSpec;
size_t length_of_arg;

DirSpec = (LPSTR) malloc (BUFSIZE);

/I Check for command-line parameter; otherwise, print usage.
if(argc 1= 2) { printf("Usage: Test <dir>\n"); return 2; }

/I Check that the input is not larger than allowed.
StringCbLength(argv[1], BUFSIZE, &length_of_arg);
if (length_of_arg > (BUFSIZE - 2)) {

printf("Input directory is too large.\n");

return 3;

}

printf ("Target directory is %s.\n", argv[1]);

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 13

Windows: stdin, stdout, stderr

* there are three standard file descriptors (as on
Linux/Unix)
- Standard Input (0, stdin)
- Standard Output (1, stdout)
- Standard Error Output (2, stderr)

* These can be accessed the same way as on a
Linux system:

#include <io.h> /* Linux: <unistd.h> */
void main() {
if (write(l, "Here is some data\n", 18) != 18)

write (2, "A write error has occurred on file descriptor 1\n",46);

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 15

Searching for Files (3)

/I Prepare string for use with FindFile functions. First, copy the
/I string to a buffer, then append "*' to the directory name.
StringCbCopyN (DirSpec, BUFSIZE, argv[1], length_of_arg+1);
StringCbCatN (DirSpec, BUFSIZE, "*", 3);

/I Find the first file in the directory.
hFind = Fi ndFi r st Fi | e(DirSpec, &FindFileData);

if (hFind == INVALID_HANDLE_VALUB {

printf ("Invalid file handle. Error is %u.\n", GetLastError()); return (-1);
}else {

printf ("First file name is %s.\n", FindFileData.cFileName);

/I List all the other files in the directory.
while (Fi ndNext Fi | e(hFind, &FindFileData) 1=0){
printf ("Next file name is %s.\n", FindFileData.cFileName);

dwError = GetLastError();
Fi ndC ose(hFind);

if (dwError I= ERROR_NO_MORE_FILES) {
printf ("FindNextFile error. Error is %u.\n", dwError); return (-1);

}

free(DirSpec);
return (0);

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 14

9.6 Theory

Alle images in this subsection are taken
from William Stallings: ,Operating
Systems*, 5th edition (2005), chapter 12;
slides are based on slides by Patricia Roy,
Manatee Community College (with small
modifications)

File Organization (1)

Criteria for File Organization

» Short access time

- Needed when accessing a single record

- Not needed for batch mode

Ease of update

- Files on CD-ROM are not updated

Economy of storage

- there should be minimum redundancy in the data
- use redundancy to speed access, e.g. an index
Simple maintenance

Reliability

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 17

File Organization (3)

» Example for Pile: contents of typical configuration files
(here: Wine configuration)

[Drive A] [Drive D]

"Type" = "floppy" "Path"="/media/cdrecorder"

"Path" = "/media/floppy" "Label"="cdrecorder"

"Label" = "/media/floppy" "Type"="cdrom"

"Device" = "/dev/fd0" "FS"="win95"
;"Device"="/dev/cdrecorder"

[Drive C]

"Path" = "${HOME}/.wine/fake_windows" [Drive E]

"Type" = "hd" "Path"="/media/cdrom"

"Label" = "fake_windows" "Label"="cdrom"

"Filesystem" = "win95" "Type"="cdrom"
"FS"="win95"
;"Device"="/dev/cdrom"

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 19

File Organization (2)

* The Pile |
- Data are collected in the |

order they arrive ——

- Purpose is to accumulate a
mass of data and save it

- Records may have 4'—|

different fields
Variable-length records
- No structure Variable set of fields

. Chronological order
- Record access is by

exhaustive search (a) Pile File

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 18

File Organization (4)

» The Sequential File
- Fixed format used for records
- Records are the same length
- All fields the same (order and length)
- Field names and lengths are attributes of the file

- One field is the key field
* Uniquely identifies the record
» Records are stored in key sequence

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 20

File Organization (5)

* The Sequential File

- New records are placed
in a log file or transaction
file

- Batch update is per-
formed to merge the log
file with the master file

Fixed-length records
Fixed set of fields in fixed order
Sequential order based on key field

(b) Sequential File

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 21

File Organization (7)

* Indexed Sequential File

- Index provides a lookup capability to quickly reach
the vicinity of the desired record

* Contains key field and a pointer —
to the main file

« Index is searched to find Index Main File
highest key value that is equal ="}
to or precedes the desired key P
value

* Search continues in the main ot
file at the location indicated by i
the pointer

PE—

(¢) Indexed Sequential File

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 23

File Organization (6)

« example for sequential file:

struct data {
intid; /llength 4
char name[30]; // length 30
char vorname[30]; // length 30

h

int blocksize = sizeof(struct data);
// 30+30+4=64

struct data buffer;

main() {
printf ("block size: %d \n", blocksize);

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 22

File Organization (8)

» Comparison of sequential and indexed
sequential files
- Example: a file contains 1 million records

- On average 500,000 accesses are required to find
a record in a sequential file

- If an index contains 1000 entries, it will take an
average 500 accesses to find the key, followed by
500 accesses in the main file.

- Now on average it takes 1000 accesses
(that's a factor of 1/500)

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 24

File Organization (9)

* Indexed Sequential File
- New records are added to an overflow file

- Record in main file that precedes it is updated to
contain a pointer to the new record

- The overflow is merged with the main file during a
batch update

- Multiple indexes for the same key field can be
created to increase efficiency

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 25

Secondary Memory Management (1)

» Space must be allocated to files

* Must keep track of the space available for
allocation

Pre-Allocation
- Need the maximum size for the file at the time of
creation

- Difficult to reliably estimate the maximum potential
size of the file

- Tend to over-estimate file size so as not to run out
of space

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 27

File Organization (10)

Exhaustive Exhaustive Partial

b Indexed Flle index index index
- Uses multiple indexes for
different key fields
- May contain an exhaustive _vrd/’ | | :

index that contains one entry [[
for every record in the main I I

file | | |
- May contain a partial index
(on_Iy entries for re_cords in (variable Tonoth seconds)
which this field exists)
(d) Indexed File

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 26

Secondary Memory Management (2)

» Contiguous allocation

- Single set of blocks is allocated to a file at the time
of creation

- Only a single entry in the file allocation table
« Starting block and length of the file

 External fragmentation will occur
- Need to perform compaction

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 28

Secondary Memory Management (3)

: : File Allocation Table

File A File Name Start Block Length
I SN NN File A 2 3
File B 9 5
= File C 18 8
I m| | n
T L S S

15[17| 2 19827
File C

w4 nE22 2P 7 w7 Wi
Fike E

5P 26 7] 2 2o]

File D

30888 3R 32 J a3]3|
\N____________/

Figure 12.7 Contiguous File Allocation

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 29

Secondary Memory Management (5)

* Chained allocation
- Allocation on basis of individual block

- Each block contains a pointer to the next block in the
chain

- Only single entry in the file allocation table
(Starting block and length of file)

- No external fragmentation
- Best for sequential files
- No accommodation of the principle of locality

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 31

Secondary Memory Management (4)

: : File Allocation Table
File A File Name Start Block Length
INSEINNENE File A 0 3
File B File B 3 5
SE B EZEZ IR
File C -
17 W =2 s w2 File B 16 3
File E File D
527 6] 1] s 1B
20 1 [2 [Jaa[]
s 2ol J2r[Jas[Jao[]
o1 Ja2[Ja[Jas[]
\-..___________...-/

Figure 12.8 Contiguous File Allocation (After Compaction)

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 30

Secondary Memory Management (6)

:_ : File Allocation Table
File B File Name Start Block Length
O O O

S N I I s |
w_Jn[Jul Jul Ju
15l J e][] s Jfis[]
w a2 23]
5[Jae[2 |28

File B 1 5

Figure 12.9 Chained Allocation

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 32

Secondary Memory Management (7)

:.. : File Allocation Table

File B File Name Start Block Length
0| 1 2| 3 4

s 1ol T s][]
w_Jn[Je[Jul Ju[]
sl Jas[a7 s Juo[]
202 J=[][]
s Jas[Jo[Jasl []

File B 0 5

Figure 12.10 Chained Allocation (After Consolidation)

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 33

Secondary Memory Management (9)

::. : File Allocation Table

File B File Name Index Block

File B 24

s a[][Jas[][]
_______________/

Figure 12.11 Indexed Allocation with Block Portions

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 35

Secondary Memory Management (8)

* Indexed allocation

- File allocation table contains a separate one-level
index for each file

- The index has one entry for each portion allocated
to the file
(portions are the smallest units which can be
allocated - this size can vary from single blocks to
the whole file)

- The file allocation table contains the block number
of the index

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 34

Secondary Memory Management (10)

: : File Allocation Table
File B File Name Index Block
o1
File B 24
O
o Ju[]
sl Jus[]
‘‘‘‘‘ - Start Block Length
w Do Jx 1 \
28 4
a5 J2e[][a8 14 1

B EE
_‘_______‘/

Figure 12.12 Indexed Allocation with Variable-Length Portions

Hans-Georg Efer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 36

Secondary Memory Management (11)

Management of free disk space
* manage the disk space which is currently unused

* in addition to FAT (file allocation table) there is a
disk allocation table with information about free
areas

« bit table: bit vector which each bit representing one
disk block:
0 = free block 1 = used block
(cf. bit vectors for free main memory management)
-> bit table may completely fit in RAM (efficient)

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 37

Secondary Memory Management (12)

* free block list: blocks are numbered; a list
contains the numbers of all free blocks

- list is too big to be kept in memory completely
- remedy: treat list as a FIFO queue

* keep the first few 1000 and the last few 1000 queue
entries in memory

* block allocation: take an entry from the queue's head
* Block deallocation: append an entry to the queue's tail

« from time to time synchronize heads and tails with data
on disk

Hans-Georg EBer, FH Miinchen Operating Systems II, WS 2006/07 — 2006/12/19 9. File Systems (4) — Slide 38

